- 1. Where would you look for an event horizon?
 - \bigcirc **a.** in the magnetosphere of a neutron star
 - **𝒴b.** near a black hole
 - \bigcirc **c.** at the edge of the visible universe
 - **Od.** in the photosphere of a star (e.g., the Sun)
- 2. The accretion disk surrounding a black hole is characterized by the emission of
 - **a.** red light.
 - **Ob.** blue light.
 - **Oc.** radio waves.
 - **⊗d.** X rays.

3. The Local Group is

- \bigcirc **a.** the family of planets around the Sun.
- \odot **b.** a cluster of galaxies in which the Milky Way is located.
- \bigcirc **c.** a star cluster to which the Sun belongs.
- Od. the name of the spiral arm of the Milky Way Galaxy in which the Sun is located.
- 4. Quasars are
 - **a.** sources of intense radio energy only, not visible at other wavelengths, and relatively large but very distant.
 - **b.** starlike sources of great energy located in the Milky Way Galaxy and intrinsically very small.
 - $\mathbf{Sc.}$ prolific sources of energy, starlike in appearance, and intrinsically small.
 - **Od.** sources of great energy, very large in actual size, and shaped like galaxies.
- **5.** According to Hubble's law, how old is the universe? (H_0 = Hubble's constant)
 - **○**a. *H*₀
 - **⊗**b. 1/H₀
 - \bigcirc **c.** *r*/*H*₀ (where *r* = distance in Mpc)
 - **Od.** v/H_0 (where v = recession velocity in km/s)

- **6.** Where is the Earth?
 - $O_{\mathbf{a}}$. near the edge of an expanding universe, as shown by the microwave radiation coming to Earth from the edge
 - $O_{\mathbf{b}}$. near but probably not right at the center of the universe, as shown by the fact that the edge is so far away from Earth
 - $\circ_{\mathbf{c}}$. at the exact center of an expanding universe, as shown by the universal expansion away from Earth in all directions
 - **I**. somewhere in an expanding universe but not in any special part of it
- 7. The cosmic background radiation is the
 - \bigcirc **a.** result of the radioactive decay of heavier, unstable elements produced in supernova explosions.

 - Oc. faint glow along the elliptic, caused by sunlight scattering from dust particles.
 - **d.** radio noise from hot gas in rich clusters of galaxies.

8. The cosmic microwave background was discovered by

- \odot **a.** scientists testing a new antenna and receiver for satellite communications.
- **(b.** rocket-borne telescopes that also discovered X-ray sources in space.
- Oc. the *Voyager 2* spacecraft during one of its "coasting" periods between planetary encounters.
- **O**d. the IRAS satellite, which produced an all-sky infrared survey.