
4-ε Expansion

The critical exponents ”stick” to their mean-field values above the upper

critical dimension duc, but assume a nontrivial dimensionality dependence for

d < duc. Most remarkably, their values prove to be smooth, analytical functions

of the dimensionality d. This crucial observation, first made by Wilson and

Fisher, led to the formulation of a systematic and controlled RG approach based

on an expansion in ε = duc − d.

We have already seen that the Gaussian theory provides an essentially exact formulation

for the computation of critical exponents above the upper critical dimension (duc = 4 for

the Ising model we consider here), since all higher order terms in the Landau action prove

to be irrelevant operators. This is no longer true d < duc, where the situation becomes more
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complicated. Luckily, most terms still remain irrelevant (e.g. k4φ2, or φn, with n > 4),

but the uφ4 term now becomes relevant, since our power-counting analysis (based on the

Gaussian model) already indicates that u(b) = b4−du grows under rescaling.

The situation is now much more complicated. First, in contrast to the Gaussian model,

the theory augmented by the uφ4 term cannot be solved in closed form. Second, the existence

of an additional relevant operator now seems to bring into question the very validity of

Kandanoff scaling. The solution of the problem is far from obvious, and this is the main

reason why it took years from the original ideas of Widom and Kandanoff, until Wilson and

Fisher realized that one can use the quantity ε = duc − d as a small parameter to control

the theory. Their idea was that, although physical systems live in integer dimensions, the

mathematical problem of computing the partition function (i.e. critical exponents) can be

analytically continued to arbitrary dimension d. This indeed proves to be the case, as one

can see from the above figure (taken from the Michael Fisher’s 1974 Rev. Mod. Phys.

article), showing the smooth evolution of the susceptibility exponent γ for various models

as a function of dimensionality d and the number of components of the order parameter n.

Perturbative RG in d = 4− ε

We now proceed with implementing our RG program in 4 − ε dimensions, where the

effects of the ”interaction” u are small, and thus can be incorporated in a perturbative

fashion. This does not mean that we are doing simple perturbation theory! What we do

is the computation of the β-function in a perturbative fashion, i.e. in the regime where its

form assumes a small deviation from that predicted by Gaussian theory.

As in the treatment in the Gaussian model, we break the order parameter field in its long

wavelength and short wavelength components

φ(k) = φlong(k) + φshort(k),

with

φlong(k) =

 φ(k), 0 < k < Λ/b

0, Λ/b < k < Λ
; φshort(k) =

 0, 0 < k < Λ/b

φ(k), Λ/b < k < Λ
,

and formally integrate over the short-wavelength components [We use this notation to avoid

constantly having to write the limits of integration.]. In contrast to the Gaussian model,
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the Action is not any longer quadratic in φshort, so the desired computation cannot be

done exactly. Instead, we perform it perturbatively in the nonlinear u-term, as follows. In

momentum space the Action takes the form (for simplicity, we consider j = 0)

S[φ] = So[φlong] + So[φshort] + Sint[φlong, φshort],

with

So[φlong] =
1

2

∫
dk

(2π)d
φlong(k) [r+k2]φlong(k);

So[φshort] =
1

2

∫
dk

(2π)d
φshort(k) [r+k2]φshort(k),

and

Sint[φlong, φshort] =
u

4

∫
dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
dk4

(2π)d
(2π)dδ(k1+k2+k3+k4)φ(k1)φ(k2)φ(k3)φ(k4).

Formally integrating out over φshort, the partition function takes the form

Z =

∫
Dφlong exp{−S̃[φlong]},

with

S̃[φlong] = − ln

∫
Dφshort exp{−S[φlong + φshort]}

= So[φlong]− ln 〈exp{−Sint[φlong + φshort]}〉So[φshort]
− lnZo

short.

We have already seen (when looking at the Gaussian model) that the constant

− lnZo
short = − ln

∫
Dφshort exp{−So[φshort]}

is a smooth function of parameters, and thus can be ignored in the critical regime. In these

expression, the averages 〈· · · 〉So[φshort]
are taken with respect to the Gaussian action So[φshort]

of short-wavelength fluctuations. These expressions are difficult to compute in general, but

we again resort to perturbation theory (i.e. ”cumulant expansion”) in Sint ∼ uφ4

δS̃[φlong] = − ln 〈exp{−Sint[φlong + φshort]}〉So[φshort]

≈ 〈Sint[φlong + φshort]〉So[φshort]

− 1

2

[〈
S2
int[φlong + φshort]

〉
So[φshort]

− 〈Sint[φlong + φshort]〉2So[φshort]

]
+ · · ·
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To linear order we find

δS̃[φlong] ≈
u

4

∫
dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
dk4

(2π)d
(2π)d

× δ(k1 + k2 + k3 + k4) 〈φ(k1)φ(k2)φ(k3)φ(k3)〉So[φshort]
.

However, since φ is now a sum of two terms φlong and φshort, we get contributions to δS̃[φlong]

with different powers of φlong. Clearly, the constant term (power (φlong)
0 ∼ const.) again

provides a contribution to the smooth background part of the free energy, and can be

safely ignored. The one with φ4
long is simply the bare interaction vertex for φlong. The only

nontrivial contribution to this order is the ”mass” renormalization corresponding to the

”Hartree” diagram corresponding to the φ2
long. More explicitly, this contribution takes the

form

δS̃(2)[φlong] =
u

4
6

∫
dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
dk4

(2π)d
(2π)d

× δ(k1 + k2 + k3 + k4)φlong(k1)φlong(k2) 〈φshort(k3)φshort(k4)〉So[φshort]
.

Using the fact that

〈φshort(k3)φshort(k4)〉So[φshort]
= (2π)dδ(k3 + k4)Go(k3),

and φlong(k) = φlong(−k) (since φlong(x) is real), we finally obtain

δS̃(2)[φlong] =
1

2
3u

∫ Λ/b

o

dk

(2π)d
φ2
long(k)

∫ Λ

Λ/b

dq

(2π)d
1

r + q2
.

Finally, after rescaling the momenta Λ/b −→ Λ in the k-integration (just as we have done

in the analysis of the Gaussian model), we find

r(b) = b2

[
r + 3u

∫ Λ

Λ/b

dq

(2π)d
1

r + q2
+O(u2)

]
.

To calculate the β-function, consider an infinitesimal momentum shell integration b = eδ`,

with δ`� 1, so b ≈ 1 + δ`, and the integral can be approximated as∫ Λ

Λ/b

dq

(2π)d
1

r + q2
≈ KdΛ

d

r + Λ2
δ`+O(δ`2).
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We can write

r(`+ δ`) ≈ (1 + 2δ`)

[
r(`) +

3uKdΛ
d

r + Λ2
δ`

]
+O(u, δ`2)

≈ r(`) +

[
2r(`) +

3uKdΛ
d

r + Λ2

]
δ`+O(u, δ`2).

In the continuum limit δ` −→ 0 we find

βr =
dr

d`
= 2r + 3Ωd

u

r + Λ2
+O(u2).

where Ωd = KdΛ
d.

To get a leading-order renormalization for the interaction vertex we need to carry out

the cumulant expansion to O(u2). We again use the Wick’s theorem, and the result (left as

a homework problem) is

βu =
du

d`
= (4− d)u− 9Ωd

u2

(r + Λ2)2 +O(u2).

Gaussian fixed point

We are now in a position to analyze our RG flows. We know that the critical point is

identified as an unstable fixed point of the RG flows. What are the fixed point in the

present case? To answer this question, we look for the solution of the equations

0 = 2r + 3Ωd
u

r + Λ2
;

0 = (4− d)u− 9Ωd
u2

(r + Λ2)2 .

As in the Gaussian model, there is a solution u∗ = r∗ = 0. We call this the Gaussian fixed

point. Let us have a look at the form of the RG flows around this fixed point. How to do

this? The considered RG equations are nonlinear differential equations, and their solution

describes the family of RG flows. At first glance it seems difficult to analytically determine

the form of these flows. But in the vicinity of a fixed point the problem is simpler, as one can

linearize the equations, in which case they reduce to a system of first order linear differential

equations which can be easily.

Let us linearize the equations around the Gaussian fixed point
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dr

d`
≈ 2r + au;

du

d`
= (4− d)u,

where a = 3Ωd/Λ
2. It is convenient to write these equations in matrix form

dz(`)

d`
= Moz(`),

where

z(`) =

 r(`)
u(`)

 and Mo =

 2 a

0 4− d

 .
Such a coupled set of linear equations can in general be solved by eigenvalue analysis, and

we look for eigenvalues λo1/2 of the (Gaussian) matrix which are found as a solution of the

eigenvalue equation ∣∣∣∣∣∣ 2− λo1 a

0 4− d− λ0
2

∣∣∣∣∣∣ = 0,

or (note that the eigenvalues do not depend on the constant a = 3Ωd/Λ
2)

(2− λo1) (4− d− λo2) = 0.

giving

λo1 = 2 > 0

λo2 = 4− d.

Just as we concluded from the analysis of the Gaussian model, the second eigenvalue becomes

positive (relevant) for d < 4. The corresponding eigenvectors are

eo1 =

 1

0

 ; eo2 =

 −a
d− 2

 .
Any vector z(`) can be expanded in the eigenvalue basis

z(`) = z1(`)eo1 + z2(`)eo2.

Plugging this in the differential equation, we find

z1/2(`) = eλ
o
1`.

The resulting structure of flows is shown in the figure.
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Wilson-Fisher fixed point

The situation seems discouraging, as we find two relevant eigenvalues. At first glance, the

scaling hypothesis of Kadanoff does not work. What is wrong? The answer was provided

by the ground-breaking observation of Wilson and Fisher, who noticed that below four

dimensions another fixed point emerges, with all the right properties. Expecting that for

ε = 4 − d small this second fixed point is close to the Gaussian one, we expand the RG

equations to quadratic order

dr

d`
≈ 2r + au− bur;

du

d`
≈ εu− 3bu2,

where ε = 4 − d, and b = 3Ωd/Λ
4. Note that to this order the second equation does not

u

r

critical hypersurface

Michael E. Fisher

u

r

critical hypersurface

u

r

u

r

critical hypersurface

Michael E. FisherMichael E. Fisher
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depend on r, and we can immediately find a new (Wilson-Fisher) fixed point at

u∗ = ε/3b and r∗ = −au∗/2 = −εa/6b.

Next, expand the β-function around the nontrivial fixed point defining δr = r − r∗ and

δu∗ = u− u∗

d

d`
δr = (2− bu∗)δr + (a− br∗)δu;

d

d`
δu = (ε− 6bu∗)δu.

The matrix to be diagonalized now is

M =

 2− bu∗ a− br∗

0 ε− 6bu∗

 ,
and we immediately find

λ1 = 2− bu∗ = 2− ε/3 > 0;

λ2 = ε− 6bu∗ = −ε < 0!!!!

The flows corresponding to the Wilson-Fisher (WF) and the Gaussian (G) fixed point are

shown in the figure.

Field scaling and exponents

An external symmetry breaking field is generally a relevant perturbation which vanishes

at the critical point. It can therefore be treated as a small perturbation. For a uniform

external field the corresponding contribution to the Landau action takes the form

Sj = −j
∫
dxφ(x) = −jφ(k = 0).

Since it only couples to the k = 0 component of the order parameter, it is not directly

affected by momentum shell integration, which eliminates high momentum components of

the order parameter field. The only renormalizations then arise from the length scale and

field renormalization, precisely as we described in the Gaussian model, and we find

dj

d`
= (

d

2
+ 1)j,
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i.e.

λj =
d

2
+ 1.

Just as the standard Kadanoff scheme, we are therefore left with only two relevant eigen-

values λt = λ1and λj, both of which we have computed within the ε-expansion. We can

immediately use the Kadanoff scaling relations to compute the values of all the critical

exponents, and we find

ν =
1

2
+

ε

12
; α =

ε

6
; γ = 1 +

ε

6
; β =

1

2
− ε

6
; δ = 3 + ε.

These results provide surprisingly good estimates if we extrapolate them to d = 3 (i.e.

ε = 1).

Universality restored

We pause to fully appreciate the incredible beauty and significance of these landmark

result. The first important observation we make is that, in contrast to the Gaussian fixed

point, the WF fixed point has only one relevant eigenvalue. It corresponds to the combi-

nation of the r and u terms in the Action which represent the only relevant operator. The

other eigenvalue is negative, thus corresponding to an irrelevant operator. This can be more

fully appreciated if we have a look at the structure of the RG flows, as shown in the figure.

There can be clearly seen a line in the r-u plane corresponding to the irrelevant eigenvalue

and which, as we will not show, corresponds to the critical hypersurface (dashed line in

figure).

The flows divide in three distinct groups, as follows:

1. If the ”bare” values of r and u are ”above” the critical hypersurface, then r −→ +∞

and u −→ u∗. This corresponds to the high temperature (paramagnetic) phase of the

system.

2. If the ”bare” values of r and u are ”below” the critical hypersurface, then r −→ −∞

and u −→ u∗. This corresponds to the low temperature (ordered) phase of the system.

3. If the ”bare” values of r and u are anywhere on the critical hypersurface, then r −→ r∗

and u −→ u∗. This corresponds to critical point itself. Note that there is an entire
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manifold of bare values for r and u that corresponds to the critical point of the system.

These correspond to different microscopic models which all find themselves precisely

at the critical temperature.

Crossover phenomena and the Ginzburg region in RG language

We are now equipped to discuss how the system behaves as the transition is approached.

We anticipate that far enough from the transition (in fact everywhere except in a very

narrow critical region), the behavior is well represented by Landau theory, as fluctuation

corrections are small. How does this translate in the RG flow language? To answer this

question, imagine the system is very close to the critical temperature. In RG language

this means that the initial condition (bare values for r and u) are very close to the critical

hypersurface. Upon rescaling, the system flows ”towards” the WF fixed point for a very

long time, until it eventually decides to ”peel off” and flow towards r −→ +∞. But by this

time the ”memory” of initial conditions (bare coupling constants) is completely forgotten!

This is precisely the manifestation of universality Kadanoff has correctly anticipated.

On the other hand, if the system is farther away from the critical temperature, then the

initial conditions in the r-u plane are not too close to the critical hypersurface. Imagine that

we start with large values of r and u. Since the Gaussian and the Wilson-Fisher fixed points

are very close (at least for ε = d− 4� 1), the coupling constant u appears to flow to zero

for a very long time, until it finally saturates to u = u∗. Until the flows reach the immediate

vicinity of the WF fixed point, they assume exactly the same form as in the Gaussian model.

Indeed, if we are far enough from the transition, then the system cannot ”distinguish” or

”resolve” the Gaussian from the Wilson-Fisher fixed point, and the behavior is extremely

well described by the Gaussian theory. In this regime, therefore, all predictions of Landau

theory apply, and fluctuation corrections are small.

Generalizations: O(n) theory

The procedure can be easily generalized to many more complicated situations. For exam-

ple, for isotropic magnets the order parameter (local magnetization) is a three component

vector field that can smoothly rotate in any direction. This is commonly called the ”Heisen-
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berg” model. The appropriate generalization to an n-component field is the so-called O(n)

ϕ4-theory with Landau action

S[φ] =
1

2

n∑
α=1

∫
dxφα(x) [r−∇2]φα(x) +

u

4

∫
dx

(
n∑

α=1

φ2
α(x)

)2

−
n∑

α=1

∫
dx ja(x)φα(x).

The lowest order ε-expansion can easily be worked out for this model (homework problem)

giving

dr

d`
= β(n)

r = 2r + (n+ 2)Ωd
u

r + Λ2
;

du

d`
= β(n)

u = (4− d)u− (n+ 8)Ωd
u2

(r + Λ2)2 .

The eigenvalues now take the form

λ1 = 2− n+ 2

n+ 8
ε+O(ε2); λ2 = −ε+O(ε2).

Perturbations and crossovers

In real materials, there are often perturbations that weakly violate some symmetry of

the Hamiltonian. For example, many magnets are almost completely isotropic, except for a

small ”cubic” anisotropy resulting from crystal fields, which favors certain crystallographic

directions for magnetization. How do these affect the critical behavior? We have seen

that within Landau theory the critical exponents are the same for all symmetry classes,

for example for Heisenberg (isotropic) and Ising (easy axis) magnets. When fluctuation

corrections are incorporated within our RG approach, we have seen that critical exponents

do depend on the number of components n.

But what happens if a small symmetry breaking field is added? How do we describe this

effect within our RG scheme? Consider, for example ”cubic anisotropy”, which can result

from crystal fields, and which takes the form

δSv =
v

4

∫
dx

n∑
α=1

φ4
α(x).

Note that such a perturbation does not respect the rotational symmetry of the original

model. Its effects can be analyzed by examining how the coupling constant v renormalizes

under rescaling, and using the same ε-expansion approach we have used before. The results
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show that for a sufficiently small number of components (n < 4), the isotropic (v = 0) fixed

point is stable, and the perturbation is an irrelevant operator. Therfore such a term does

not affect the behavior of Heisenberg (n = 3) or even XY (n = 2) magnets.

Another example is the single ion anisotropy, where the perurbation takes the form

δSg = −1

2
g

∫
dx φ2

1(x).

Such a term will be present, for example, when one particular direction (call it α = 1)

is energetically more (or less for g < 0) favorable for ordering. We can again apply the

ε-expansion approach. This calculation is similar as what we have done before, and is left

for a homework problem. The net conclusion, however, is that such a symmetry breaking

term is always a relevant perturbation, and the isotropic fixed point is generically unstable.

What happens when g is very small? New fixed points emerge, reflecting behavior of models

with lower symmetry. For g > 0 the spins preperentially order in the direction α = 1, and

one get critical behavior identical to that of the Ising (n = 1) model. In the opposite limit

(g < 0) the spins poult like to order in the ”plane” perpendicular to α = 1 (”XY plane”),

and one gets critical behavior of the n− 1 component model.

If the bare value of the symmetry breaking perturbation is weak, then we find a proto-

typical example of a crossover phenomenon. If one considers the system not too close to

the critical temperature (e.g. critical hypersurface), then the form of the flows is almost

identical as for the isotropic system. We say that in a broad range of temperatures the

behavior of the system is controlled by an unstable fixed point. Only if the system is very

close to the critical temperature we see the effects of the symmetry breaking perturbation.

Within the critical manifold the system then ”crosses-over” from an unstable to a stable

fixed point. To gauge the relative importance of different symmetry breaking perturbations

one, therefore, has to classify all possible fixed points within the critical hypersurface man-

ifold, and examine their relative stability. A nice discussion of crossovers corresponding to

different symmetry classes can be found in the 1974 review article by Michael Fisher.


