Homework Assignment #1 - Solutions

Problem 1. The first law of thermodynamics gives:
AQ(p,V,T) = AE(V,T) + A(pV). (1)

At constant p, the total differential form of this law is written as:

aQ = (Z‘Jf) dV+<g§:) dT + pdV. (2)

The specific heat C,, is defined as (0Q/9T), can be derived as:
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The first two terms of the RHS could be combined as the total dependence of E on the temperature T at constant

pressure p:
p T p V .

Using this argument, the equation (3) has the following form:
ov
) 5
(GT)p (5)

Q) OF
() ~(2) -
ory, ory,
Problem 2. Consider a gas at temperature T" and pressure P in equilibrium. This gas is in thermal contact with
a heat resevoir In equilibrium the entropy of the system is maximum. Since the Gibbs free energy G = E—TS5+ PV
is minimum in equilibrium any change in the internal energy, entropy, or volume from the equilibrium values will

increase G, that is dE — T'dS + PdV > 0. Since this equation is valid for all deviations we can expand dE in a series
about these values
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This equation is satisfied if each term satisfies it separately.
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Finally, using a%iab;/ > 0, we can write
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Problem 3.

a) The Hamiltonian describing system of 2 Ising spins is:
H=-J55 — h(Sl + Sg)
The energies of every states could be written explicitly as:

Ejy = —(J +2h),
Ejp_y =,

E 11y =,

Ej1o1y = —(J = 2h),

so the partition function could be obtained immediately:

Z(T,h) =Y exp(—BEs,s,) =2[e"? + e’ cosh(25h)] .
S1,52

The free energy can now be obtained from the partition function as:

F(T,h) = T Z(T,h) = =T {In2 + In [e?7 + ¢?7 cosh(2/3h)] } .

b) The magnetization per spin is:

m(T,h) = ——{In[e "7 + e’/ cosh(20n)] }
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The magnetization approaches unity as the external magnetic field increase:
The spin susceptibility can be evaluated as:

x(T) = (%;’:)h _ { 2387 cosh(24h) 286297 sinh?(26h)
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¢) The inverse spin susceptibility is:
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At high temperature, the following asymptotics are applicable:
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so the equation (17) becomes:

where © = J.

Inverse spin susceptibility at high temperature
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d) Using the full expresstion carried out in (17), the inverse susceptibility x~(7') is ploted as a function of tem-
perature T: The above figure indicates that the inverse susceptibility remains finite at any finite temperature, as the
phase transition is not found for N = 2.

e) Chosing a small value of h, the magnetization could be ploted as a function of temperature: The magnetization
certainly does not display the m™t2 behavior of the thermodynamic limit. As we increase the number of spins this
behavior will become more clear, but again, non-analytic behavior will only emerge for N = oc.

f) At J =0, the magnetization and susceptibility are reduced to:
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m(T,h) = 1+ cosh(2h/T)’

(20)



Magnetization per =pin as function of temperature
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and can be written (deﬁneT:Tlc7P:%,_:V%)
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where a and b represent the attraction between particles and the finite size of the hard core particles. Now recall the
Helmholtz free energy dF = —SdT — PdV + pudN. So that

P = 72—5. So we can now integrate the above equation at constant T

F - / (j{fb _ V) v (25)
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= NkgTln(V — Nb) + + f(T); f is an integration constant of T (26)
To determine the integration constant we can compare this free energy to the free energy of an ideal gas. When
a = b = 0 the two should be the same. Recall the free energy of a classical ideal gas is —F = NkgT'In (V) + NkpT,
therefore we find f (T) = NkgT
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Notice that I have snuck in the factor NV _1)\}3 into the logarithm, to agree with the ideal gas. Now we can calculate
the specific heat.
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To calculate the isothermal compressibility ky = —V 1 (g—V)T near the critical point differentiate the above eqation
for P with respect to V
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Now near the critcal point V' = 1, and we approach from 7 > 0. That is (g—ﬁ)T =6(1—T), so that

Tc

@17 o

RT =

Finally we calculate the density jump dv = V‘_/VC . Define the reduced temperature ¢t = T;TC =T —1, and the reduced

c

density (order parameter) ¢ = V%/c =V —1. Now the VAW equation P = %VT — % becomes P = %q’if% — (¢_El)2.
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Now expand this equation in powers of the order parameter.
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P=1+4t—6tp — 5(;53 + higher order terms. (31)

Below T, ¢ will serve as the order parameter. Now, recall the Maxwell construction, the location of the zero slope
for P is determined by solving
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So that
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Now integrating the above expantion for P in terms of the order parameter ¢, for constant ¢, we find that
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After integrating we find that
—5 (64— ) — 3t (61— 6) = 0 (39)

Upon solving, the only physical solution is ¢, = —¢@¢, which could also have been obtained by looking at the PV
diagram and thinking about it for a minute by considering the analogy with the magnetic case. Now to determine
the density jump, we know that for every temperature below T¢, P, = Pg, and also our above condition holds. So,



using again the expantion for P in terms of the order paramter. We find ((b% = q%)

0=1+4t — 6tp, — %qﬁif <1+4t6t¢>g gczré;) (39)
= 6t (61~ ba) — 5 (61 ~ o) (10)
= 61 (61 +61) — 563 (61 + ox) (1)
— 6t — gqs% (42)
Finally,
4t =¢? (43)
6= V;iCVC ey (44)

We have found that the since Cy, is constant the critical exponent is 0, the critical exponent v is 1 since kK
(Tc —T)7!, and the reduced density jump yields a critical exponent 3 = %



