Homework Assignment \#1 - Solutions

Problem 1. The first law of thermodynamics gives:

$$
\begin{equation*}
\Delta Q(p, V, T)=\Delta E(V, T)+\Delta(p V) \tag{1}
\end{equation*}
$$

At constant p, the total differential form of this law is written as:

$$
\begin{equation*}
d Q=\left(\frac{\partial E}{\partial V}\right)_{p, T} d V+\left(\frac{\partial E}{\partial T}\right)_{p, V} d T+p d V \tag{2}
\end{equation*}
$$

The specific heat C_{p} is defined as $(\partial Q / \partial T)_{p}$ can be derived as:

$$
\begin{equation*}
C_{p}=\left(\frac{\partial Q}{\partial T}\right)_{p}=\left(\frac{\partial E}{\partial V}\right)_{p, T} \frac{\partial V}{\partial T}+\left(\frac{\partial E}{\partial T}\right)_{p, V}+p\left(\frac{\partial V}{\partial T}\right)_{p} \tag{3}
\end{equation*}
$$

The first two terms of the RHS could be combined as the total dependence of E on the temperature T at constant pressure p :

$$
\begin{equation*}
\left(\frac{\partial E}{\partial T}\right)_{p}=\left(\frac{\partial E}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}+\left(\frac{\partial E}{\partial T}\right)_{V} \tag{4}
\end{equation*}
$$

Using this argument, the equation (3) has the following form:

$$
\begin{equation*}
C_{p}=\left(\frac{\partial Q}{\partial T}\right)_{p}=\left(\frac{\partial E}{\partial T}\right)_{p}+p\left(\frac{\partial V}{\partial T}\right)_{p} \tag{5}
\end{equation*}
$$

Problem 2. Consider a gas at temperature T and pressure P in equilibrium. This gas is in thermal contact with a heat resevoir In equilibrium the entropy of the system is maximum. Since the Gibbs free energy $G=E-T S+P V$ is minimum in equilibrium any change in the internal energy, entropy, or volume from the equilibrium values will increase G, that is $d E-T d S+P d V \geq 0$. Since this equation is valid for all deviations we can expand $d E$ in a series about these values

$$
\begin{align*}
0 & \leq \frac{\partial E}{\partial S} d S+\frac{\partial E}{\partial V} d V+\frac{1}{2} \frac{\partial^{2} E}{\partial S^{2}} d S^{2}+\frac{\partial^{2} E}{\partial S \partial V} d V d S+\frac{1}{2} \frac{\partial^{2} E}{\partial V^{2}} d V^{2}-T_{0} d S+P_{0} d V \tag{6}\\
& =\frac{1}{2} \frac{\partial^{2} E}{\partial S^{2}} d S+\frac{\partial^{2} E}{\partial S \partial V} d V+\frac{1}{2} \frac{\partial^{2} E}{\partial V^{2}} d V \tag{7}
\end{align*}
$$

This equation is satisfied if each term satisfies it separately.

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial S^{2}}=\frac{\partial}{\partial S}\left(\frac{\partial E}{\partial S}\right)_{V}=\frac{\partial T}{\partial S} \geq 0 ; \text { here we used }\left(\frac{\partial E}{\partial S}\right)_{V}=T\left(1^{s t} \text { Law }\right) \tag{8}
\end{equation*}
$$

Therefore

$$
C_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V} \geq 0
$$

Similarly

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial V^{2}}=\frac{\partial}{\partial V}\left(\frac{\partial E}{\partial V}\right)_{V}=-\left(\frac{\partial P}{\partial V}\right)_{S} \geq 0 ;\left(1^{s t} \mathrm{Law}\right) \tag{9}
\end{equation*}
$$

Therefore

$$
\kappa_{S}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{S} \geq 0
$$

Finally, using $\frac{\partial^{2} E}{\partial S \partial V} \geq 0$, we can write

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial S^{2}} \frac{\partial^{2} E}{\partial V^{2}}-\left(\frac{\partial^{2} E}{\partial S \partial V}\right)^{2}=\left(\frac{\partial T}{\partial S}\right)_{V}\left(\frac{\partial P}{\partial V}\right)_{S}-\left(\frac{\partial T}{\partial V}\right)_{S}\left(\frac{\partial P}{\partial S}\right)_{V}=-\frac{(\partial P / \partial V)_{T}}{(\partial S / \partial T)_{V}} \geq 0 \tag{10}
\end{equation*}
$$

Therefore

$$
\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{Y} \geq 0
$$

Problem 3.

a) The Hamiltonian describing system of 2 Ising spins is:

$$
\begin{equation*}
\mathcal{H}=-J S_{1} S_{2}-h\left(S_{1}+S_{2}\right) . \tag{11}
\end{equation*}
$$

The energies of every states could be written explicitly as:

$$
\left\{\begin{array}{l}
E_{|11\rangle}=-(J+2 h), \tag{12}\\
E_{|1-1\rangle}=J \\
E_{|-11\rangle}=J \\
E_{|-1-1\rangle}=-(J-2 h),
\end{array}\right.
$$

so the partition function could be obtained immediately:

$$
\begin{equation*}
Z(T, h)=\sum_{S_{1}, S_{2}} \exp \left(-\beta E_{S_{1} S_{2}}\right)=2\left[e^{-\beta J}+e^{\beta J} \cosh (2 \beta h)\right] . \tag{13}
\end{equation*}
$$

The free energy can now be obtained from the partition function as:

$$
\begin{equation*}
F(T, h)=-T \ln Z(T, h)=-T\left\{\ln 2+\ln \left[e^{-\beta J}+e^{\beta J} \cosh (2 \beta h)\right]\right\} . \tag{14}
\end{equation*}
$$

b) The magnetization per spin is:

$$
\begin{align*}
m(T, h) & =-\frac{1}{2} \frac{\partial F}{\partial h}=\frac{T}{2} \frac{\partial}{\partial h}\left\{\ln \left[e^{-\beta J}+e^{\beta J} \cosh (2 \beta h)\right]\right\} \\
& =\frac{T e^{\beta J}}{2\left[e^{-\beta J}+e^{\beta J} \cosh (2 \beta h)\right]} \frac{\partial \cosh (2 \beta h)}{\partial h} \tag{15}\\
& =\frac{e^{\beta J} \sinh 2 \beta h}{e^{-\beta J}+e^{\beta J} \cosh (2 \beta h)}=\frac{e^{J / T} \sinh (2 h / T)}{e^{-J / T}+e^{J / T} \cosh (2 h / T)}
\end{align*}
$$

The magnetization approaches unity as the external magnetic field increase:
The spin susceptibility can be evaluated as:

$$
\begin{align*}
\chi(T) & =\left(\frac{\partial m}{\partial h}\right)_{h=0}=\left.\left\{\frac{2 \beta e^{\beta J} \cosh (2 \beta h)}{e^{-\beta J}+e^{\beta J} \cosh (2 \beta h)}-\frac{2 \beta e^{2 \beta J} \sinh ^{2}(2 \beta h)}{\left[e^{-\beta J}+e^{\beta J} \cosh (2 \beta h)\right]^{2}}\right\}\right|_{h=0} \tag{16}\\
& =\frac{2}{T} \frac{e^{J / T}}{e^{-J / T}+e^{J / T}}=\frac{1}{T} \frac{e^{J / T}}{\cosh (J / T)} .
\end{align*}
$$

c) The inverse spin susceptibility is:

$$
\begin{equation*}
\chi^{-1}(T)=T \frac{\cosh (J / T)}{e^{J / T}} \tag{17}
\end{equation*}
$$

At high temperature, the following asymptotics are applicable:

$$
\begin{align*}
& \cosh (J / T) \approx 1+\frac{1}{2}\left(\frac{J}{T}\right)^{2}, \\
& e^{J / T} \approx 1+\frac{J}{T}+\frac{1}{2}\left(\frac{J}{T}\right)^{2} \tag{18}
\end{align*}
$$

so the equation (17) becomes:

$$
\begin{equation*}
\chi^{-1}(T) \approx T \frac{1+\frac{1}{2}\left(\frac{J}{T}\right)^{2}}{1+\frac{J}{T}+\frac{1}{2}\left(\frac{J}{T}\right)^{2}}=T-\Theta \tag{19}
\end{equation*}
$$

where $\Theta=J$.

d) Using the full expresstion carried out in (17), the inverse susceptibility $\chi^{-1}(T)$ is ploted as a function of temperature T : The above figure indicates that the inverse susceptibility remains finite at any finite temperature, as the phase transition is not found for $N=2$.
e) Chosing a small value of h, the magnetization could be ploted as a function of temperature: The magnetization certainly does not display the $m^{\sim} t^{\frac{1}{2}}$ behavior of the thermodynamic limit. As we increase the number of spins this behavior will become more clear, but again, non-analytic behavior will only emerge for $N=\infty$.
f) At $J=0$, the magnetization and susceptibility are reduced to:

$$
\begin{equation*}
m(T, h)=\frac{\sinh (2 h / T)}{1+\cosh (2 h / T)} \tag{20}
\end{equation*}
$$

Magnetization per spin as function of temperature

and

$$
\begin{equation*}
\chi(T)=\frac{1}{T} \tag{21}
\end{equation*}
$$

Problem 4. The Van der Waals equation of state in universal form is given by

$$
\begin{equation*}
\left(\frac{P}{P_{c}}+3\left(\frac{V_{c}}{V}\right)^{2}\right)\left(\frac{V}{V_{c}}-\frac{1}{3}\right)=\frac{8}{3} \frac{T}{T_{c}}, \tag{22}
\end{equation*}
$$

and can be written (define $\bar{T}=\frac{T}{T_{c}}, \bar{P}=\frac{P}{P_{c}}, \bar{V}=\frac{V}{V_{c}}$)

$$
\begin{align*}
P & =\frac{k_{B} T}{V-b}-\frac{a}{V^{2}} \tag{23}\\
\bar{P} & =\frac{8 \bar{T}}{3 \bar{V}-\frac{1}{3}}-\frac{3}{\bar{V}^{2}} \tag{24}
\end{align*}
$$

where a and b represent the attraction between particles and the finite size of the hard core particles. Now recall the Helmholtz free energy $d F=-S d T-P d V+\mu d N$. So that
$P=-\frac{d F}{d V}$. So we can now integrate the above equation at constant T

$$
\begin{align*}
-F & =\int\left(\frac{k_{B} T}{V-b}-\frac{a}{V^{2}}\right) d V \tag{25}\\
& =N k_{B} T \ln (V-N b)+\frac{a N^{2}}{V}+f(T) ; f \text { is an integration constant of } T \tag{26}
\end{align*}
$$

To determine the integration constant we can compare this free energy to the free energy of an ideal gas. When $a=b=0$ the two should be the same. Recall the free energy of a classical ideal gas is $-F=N k_{B} T \ln (V)+N k_{B} T$, therefore we find $f(T)=N k_{B} T$

$$
\begin{equation*}
F=-N k_{B} T\left(\ln \left(\frac{V-N b}{N \lambda_{T}^{3}}\right)+1\right)-\frac{a N^{2}}{V} ; \frac{1}{\lambda_{T}}=\frac{\left(2 \pi m k_{B} T\right)^{\frac{3}{2}}}{2 \pi \hbar} \tag{27}
\end{equation*}
$$

Notice that I have snuck in the factor $N^{-1} \lambda_{T}^{-3}$ into the logarithm, to agree with the ideal gas. Now we can calculate the specific heat.

$$
\begin{equation*}
C_{V}=T \frac{\partial S}{\partial T}=-T \frac{\partial^{2} F}{\partial T^{2}}=\frac{3}{2} N k_{B} . \tag{28}
\end{equation*}
$$

To calculate the isothermal compressibility $\kappa_{T}=-V^{-1}\left(\frac{\partial V}{\partial P}\right)_{T}$ near the critical point differentiate the above eqation for \bar{P} with respect to V

$$
\begin{equation*}
\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{8 \bar{T}}{3\left(V-\frac{1}{3}\right)^{2}}+\frac{6}{V^{3}} \tag{29}
\end{equation*}
$$

Now near the critcal point $\bar{V}=1$, and we approach from $\bar{T}>0$. That is $\left(\frac{\partial \bar{P}}{\partial V}\right)_{T}=6(1-\bar{T})$, so that

$$
\begin{equation*}
\kappa_{T}=\frac{T_{C}}{\left(T_{C}-T\right)} \tag{30}
\end{equation*}
$$

Finally we calculate the density jump $\delta v=\frac{V-V_{c}}{V_{c}}$. Define the reduced temperature $t=\frac{T-T_{c}}{T_{c}}=\bar{T}-1$, and the reduced density (order parameter) $\phi=\frac{V-V_{C}}{V_{C}}=\bar{V}-1$. Now the VdW equation $\bar{P}=\frac{8}{3} \frac{\bar{T}}{\bar{V}-\frac{1}{3}}-\frac{3}{\bar{V}^{2}}$ becomes $\bar{P}=\frac{8}{3} \frac{t+1}{\phi+\frac{2}{3}}-\frac{3}{(\phi+1)^{2}}$. Now expand this equation in powers of the order parameter.

$$
\begin{equation*}
\bar{P}=1+4 t-6 t \phi-\frac{3}{2} \phi^{3}+\text { higher order terms. } \tag{31}
\end{equation*}
$$

Below T_{C}, ϕ will serve as the order parameter. Now, recall the Maxwell construction, the location of the zero slope for P is determined by solving

$$
\begin{align*}
& 0=\int_{V_{L}}^{V_{G}} P(V) d V \tag{32}\\
& 0=\int_{V_{L}}^{V_{C}} P(V) d V+\int_{V_{C}}^{V_{G}} P(V) d V \tag{33}
\end{align*}
$$

So that

$$
\begin{equation*}
\int_{V_{L}}^{V_{C}} P(V) d V=-\int_{V_{G}}^{V C} P(V) d V \tag{34}
\end{equation*}
$$

Now integrating the above expantion for \bar{P} in terms of the order parameter ϕ, for constant t, we find that

$$
\begin{align*}
\int_{V_{L}}^{V_{C}} P(V) d V & =-\int_{V_{G}}^{V C} P(V) d V \tag{35}\\
\int_{V_{L}}^{V_{C}} P(\phi) d \phi & =-\int_{V_{G}}^{V C} P(\phi) d \phi \tag{36}\\
\int_{\phi_{L}}^{\phi_{C}}\left(1+4 t-6 t \phi-\frac{3}{2} \phi^{3}\right) d \phi & =-\int_{\phi_{G}}^{\phi C}\left(1+4 t-6 t \phi-\frac{3}{2} \phi^{3}\right) d \phi \tag{37}
\end{align*}
$$

After integrating we find that

$$
\begin{equation*}
-\frac{9}{8}\left(\phi_{L}^{4}-\phi_{G}^{4}\right)-3 t\left(\phi_{L}^{2}-\phi_{G}^{2}\right)=0 \tag{38}
\end{equation*}
$$

Upon solving, the only physical solution is $\phi_{L}=-\phi_{G}$, which could also have been obtained by looking at the PV diagram and thinking about it for a minute by considering the analogy with the magnetic case. Now to determine the density jump, we know that for every temperature below $T_{C}, P_{L}=P_{G}$, and also our above condition holds. So,
using again the expantion for P in terms of the order paramter. We find $\left(\phi_{L}^{2}=\phi_{G}^{2}\right)$

$$
\begin{align*}
0 & =1+4 t-6 t \phi_{L}-\frac{3}{2} \phi_{L}^{3}-\left(1+4 t-6 t \phi_{G}-\frac{3}{2} \phi_{G}^{3}\right) \tag{39}\\
& =-6 t\left(\phi_{L}-\phi_{G}\right)-\frac{3}{2}\left(\phi_{L}^{3}-\phi_{G}^{3}\right) \tag{40}\\
& =-6 t\left(\phi_{L}+\phi_{L}\right)-\frac{3}{2} \phi_{L}^{2}\left(\phi_{L}+\phi_{L}\right) \tag{41}\\
& =-6 t-\frac{3}{2} \phi_{L}^{2} \tag{42}
\end{align*}
$$

Finally,

$$
\begin{align*}
-4 t & =\phi^{2} \tag{43}\\
\phi & =\frac{V-V_{C}}{V_{C}}=\sqrt{-4 t} \tag{44}
\end{align*}
$$

We have found that the since C_{V} is constant the critical exponent is 0 , the critical exponent γ is 1 since $\kappa_{T} \propto$ $\left(T_{C}-T\right)^{-1}$, and the reduced density jump yields a critical exponent $\beta=\frac{1}{2}$.

