
1

Problem 1.
The partition function for an infinite range Ising ferromagnet can be written

Z (T, h) =
(

βJ

2π

) 1
2

∫ ∞

−∞
dt exp

{
N [− t2

2βJ
+ ln(cosh(βh + t)) + ln 2]

}
. (1)

Now, to begin computing the integral using the saddle point method (also called the method of steepest descent) let’s
plot the integrand.

a.)You can see below that for larger and larger N at h = 0 and βJ = 0.5, the integrand grows sharper around
zero, and would become a delta spike as N.grows larger. This is why in the N → ∞ limit the saddle point method
is exact.
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b.) Then for h = 0 and βJ = 1.2 at N = 10 (in the plot above as well) the integrand developes two degenerate
peaks. The peaks emerge for any J > T .

c.) With the external field on, one can see that the degeneracy of the peaks is destroyed, and the integrand again
developes only one sharp peak. The effect of the field is to break the degeneracy.

HW2 SOLUTION
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d.) The argument of the exponetial is f (t, h) = − t2

2βJ + ln(cosh(βh + t)) + ln 2, and the maxima occur at

df

dt
= 0 = − t

βJ
+ tanh (βh + t) , (2)

which has solutions t = t±, if one solves the trancendental equation above. Also,

d2f

dt2
= − 1

βJ
+ sech2 (βh + t) . (3)

Now expanding f to second order around each maximia gives

f+ (t, h) = − t+
βJ

+ tanh (βh + t+) +
1
2

(
− 1

βJ
+ sech2 (βh + t+)

)
(t− t+)2 (4)

f (t, h) = − t−
βJ

+ tanh (βh + t−) +
1
2

(
− 1

βJ
+ sech2 (βh + t−)

)
(t− t−)2 (5)

Then the integral for the positive and negative saddle points gives

I± =
∫ ∞

−∞
dt exp (f± (t, h)) (6)

= exp
(
− t±N

βJ
+ N tanh (βh + t±)

) √√√√ 2π

N
(
− 1

βJ + sech2 (βh + t±)
) , (7)

so that the full solution is

I = exp
(
− t+N

βJ
+ N tanh (βh + t+)

) √√√√ 2π

N
(
− 1

βJ + sech2 (βh + t+)
) (8)

+ exp
(
− t−N

βJ
+ N tanh (βh + t−)

) √√√√ 2π

N
(
− 1

βJ + sech2 (βh + t−)
) . (9)
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In the limit that N →∞, the peaks become very sharp and the integral is exact.
e.)
In general for an integral I(N) =

∫
dt exp (−Nf (t)), with mimima at t = t0 we can write

I(N) = e−Nf(t0)

∫
dt exp

(
−N

2
f ′′0 (t− t0)2 −N

∞∑
n=3

f
(n)
0

n!
(t− t0)n

)
. (10)

Making a change of variables, let
√

Nf ′′0 (t− t0) = z, so that the integral can be written as

I(N) = e−Nf(t0)

√
2π

Nf ′′0

∫
dz√
2π

exp

(
−1

2
z2 −

∞∑
n=3

f
(n)
0

n 6!N n
2−1

zn

(f ′′0 )
n
2

)
, (11)

that is the first order term is normalized to unity. First write the exponetial as the product of the exponetials of the
quadratic term and the infinite sum. Then for N large we can expand that exponetial in powers of N−1 which is
small.

S = exp

(
−

∞∑
n=3

f
(n)
0

n 6!N n
2−1

zn

(f ′′0 )
n
2

)
(12)

= 1−
∞∑

n=3

f
(n)
0

n 6!N n
2−1

zn

(f ′′0 )
n
2

+
1
2

( ∞∑
n=3

f
(n)
0

n 6!N n
2−1

zn

(f ′′0 )
n
2

)( ∞∑
m=3

f
(m)
0

m 6!N m
2 −1

zm

(f ′′0 )
m
2

)
+ O

(
Σ3

)
(13)

= 1− f
(3)
0

3 6!N 1
2

z3

(f ′′0 )
3
2
− f

(4)
0

4 6!N
z4

(f ′′0 )2
− f

(5)
0

5 6!N 3
2

z5

(f ′′0 )
5
2
− f

(6)
0

6 6!N2

z6

(f ′′0 )3
(14)

+
1
2

(
f

(3)
0

3 6!N 1
2

z3

(f ′′0 )
3
2

+
f

(4)
0

4 6!N
z4

(f ′′0 )2
+

f
(5)
0

5 6!N 3
2

z5

(f ′′0 )
5
2

)2

(15)

= 1− f
(3)
0

3 6!N 1
2

z3

(f ′′0 )
3
2
− f

(4)
0

4 6!N
z4

(f ′′0 )2
− f

(5)
0

5 6!N 3
2

z5

(f ′′0 )
5
2

+


1

2

(
f

(3)
0

)2

3!3!N
z6

(f ′′0 )3


 + O

(
z7

)
. (16)

Now integrating the gaussian integrals using the expanded S, we find

I(N) = e−Nf(t0)

√
2π

Nf ′′0

∫
dz√
2π

e−
1
2 z2

[1− f
(3)
0

3 6!N 1
2

z3

(f ′′0 )
3
2
− f

(4)
0

4 6!N
z4

(f ′′0 )2
(17)

− f
(5)
0

5 6!N 3
2

z5

(f ′′0 )
5
2

+


1

2

(
f

(3)
0

)2

3!3!N
z6

(f ′′0 )3


] (18)

= e−Nf(t0)

√
2π

Nf ′′0
[1− 3f

(4)
0

4 6!N
1

(f ′′0 )2
+

15
2

(
f

(3)
0

)2

3!3!N
1

(f ′′0 )3
+ O

(
1

N2

)
] (19)

= e−Nf(t0)

√
2π

Nf ′′0
exp


 1

N
(

5
24

(
f

(3)
0

)2

(f ′′0 )3
− f

(4)
0

8 (f ′′0 )2
)


 (20)

= exp


−Nf0 +

1
2

ln
(

2π

Nf ′′0

)
+

1
N

(
5
24

(
f

(3)
0

)2

(f ′′0 )3
− f

(4)
0

8 (f ′′0 )2
)


 . (21)

With this general expression we can simply take a few derivatives and ”plug-in” the results for our integral. The
result is
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I = exp


−N

(
tanh t+ − t+

βJ

)
+

1
2

ln


 2π

N
(
sech2 (t+)− 1

βJ

)




 (22)

∗ exp


 1

N
(

5
24

(
4 sech4 (t+)

)
tanh2 (t+)

(
sech2 (t+)− 1

βJ

)3 − 4 sech2 (t+) tanh2 (t+)− 2 sech4 (t+)

8
(
sech2 (t+)− 1

βJ

)2 )


 (23)

+ exp


−N

(
tanh t− − t−

βJ

)
+

1
2

ln


 2π

N
(
sech2 (t−)− 1

βJ

)




 (24)

∗ exp


 1

N
(

5
24

(
4 sech4 (t−)

)
tanh2 (t−)

(
sech2 (t−)− 1

βJ

)3 − 4 sech2 (t−) tanh2 (t−)− 2 sech4 (t−)

8
(
sech2 (t−)− 1

βJ

)2 )


 . (25)

Problem 2.
a.)

The Hamiltonian for an antiferromagnetic Ising magnet on a bipartite lattice is given by

H =
J

2

∑

<ij>

SiSj − h
∑

i

Si (26)

Now we make the mean field approximation, that is each spin on lattice A feels an average magnetization due to
spins on lattice B, and vice versa. Therefore the magnetization of each sublattice is

mA =
〈
SA

i

〉
; mB =

〈
SB

i

〉
(27)

To decouple the spins, use the Weiss mean-field approximation to find, the energy of each spin i ∈ A.

EA
i =

J

2
Si

z∑

j∈B

〈
SB

j

〉− hSi (28)

=
(

J

2
zmB − h

)
Si = BB

effSi (29)

and similarly for EB
j = J

2 SjzmA − hSj = BA
eff Sj . These relations give us the conditions of the magnetization

mA =
〈
SA

i

〉
= Z−1

∑

{S}
Sie

−β( J
2 zmB−h)Si (30)

= tanh
(
−Jβ

2
zmB + hβ

)
(31)

and similaryly for, mB = tanh
(
−Jβ

2 zmA + hβ
)
. We can now express the average magnetization m ≡ 1

2 (mA + mB),

and the staggered magnetization m† ≡ 1
2 (mA −mB) in the following form.

m =
1
2

(
tanh

(
−Jβ

2
z

(
m−m†) + hβ

)
+ tanh

(
−Jβ

2
z

(
m + m†) + hβ

))
(32)

m† =
1
2

(
tanh

(
−Jβ

2
z

(
m−m†) + hβ

)
− tanh

(
−Jβ

2
z

(
m + m†) + hβ

))
(33)
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b.)
Lets assume that h = 0 so that m = 0 → mA = −mB . From the second equation above, we find

2m† = tanh
(

Jβ

2
zm†

)
− tanh

(
−Jβ

2
zm†

)
;Expanding in m† to third order (34)

2m† = 2(
Jβ

2
zm† −

(
Jβ
2 zm†

)3

3
) (35)

1 =
Jβ

2
z −

(
Jβ
2 z

)3

m†2

3
→ (36)

m† =
1(

Jβ
2 z

)
√

3
(

1− 2T

Jz

)
=

2T

Jz

√
3

(
2Jz

2Jz
− 2T

Jz

)
(37)

=
2T

Jz

√
2
Jz

√
3

(
Jz

2
− T

)
= T

(
2
Jz

) 3
2 √

3 (TN − T ). (38)

We see the exponent β = 1
2 , as is to be expected since this is a mean field calculation.

c.)
We would now like to find the uniform spin sucseptibility χ,. therefore let h > 0. Here m will be small, expand

now the first equation from the set above to first order in m and h.

m =
1
2

(
tanh

(
−Jβ

2
z

(
m−m†) + hβ

)
+ tanh

(
−Jβ

2
z

(
m + m†) + hβ

))
(39)

2m =
(

β − β tanh2

(
1
2
Jzβm†

))
h + Jzβm

(
−1 + tanh2

(
1
2
Jzβm†

))
(40)

Solving for m gives

m (h) =

(
β − β tanh2

(
1
2Jzβm†)) h

2 + Jzβm
(
1− tanh2

(
1
2Jzβm†)) (41)

Therefore the spin sucseptibility χ is given by

χ (h) =

(
β − β tanh2

(
1
2Jzβm†))

2 + Jzβ
(
1− tanh2

(
1
2Jzβm†)) . (42)

We can now plug in our expression for the staggered magnetization

χ (h) = lim
h→0

dm (h)
dh

=





(
1−tanh2

(
1
2 Jz( 2

Jz )
3
2
√

3|TN−T |
))

2T+Jz

(
1−tanh2

(
1
2 Jz( 2

Jz )
3
2
√

3|TN−T |
)) ; T < TN

1
T+Jz ; T > TN

. (43)
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I have rescaled the coupling contant J to include the factor of 2. In the plot above one can clearly see the cusp
at the Nèel temperature. One could more rigorously show the existance of the cusp, but finding that dχ

dT |T→T−N
−

dχ
dT |T→T+

N
= const.

d.)
The recipe for finding V

(
φ, φ†

)
is as follows, we are given m(φ) and m

† (
φ†

)
, above. We want to find V ,

such that upon diffenetiation with respect to the order parameter in question we obtain the desired expansion for
that order parameter. Now, expanding φ and φ† to first order in h, to first order in φ, and to fifth order in φ†, we
find that (I have gotten rid of the factor of 2 in the tanh, because we can redefine J to include it)

φ = −Jzβφ + βh− (Jzβ)3 φ†2φ (44)

φ† = Jzβφ† − 1
3

(Jzβ)3 φ†3 +
2
15

(Jzβ)5 φ†5 − (Jzβ)3 φ†φ2 (45)

Since V
(
φ, φ†

)
= 1

2rφ†2 + 1
4uφ†4 + 1

6vφ†6 + 1
2r1φ

2 − jφ + wφ†2φ2, upon equating coefficients we find that

r = −1 + Jzβ (46)

u = −1
3

(Jzβ)3 (47)

v =
2
15

(Jzβ)5 (48)

r1 = 1 + Jzβ (49)
j = −βh (50)

w = − (Jzβ)3 (51)

e.)
Let us assume r ∼ (T − TC)/TCSince we are looking at the transition to antiferromagnetic ordering the order

parameter we wish to explore is φ†. The staggered magnetization is then given by mimimizing the Landau potential
V

(
φ, φ†

)
with respect to φ†. This gives.

0 = rφ† + uφ†3 + vφ†5 + 2wφ†φ2 (52)
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