Solutions for HW#3

Problem 3.1

The defintion of the susceptibility is x (Z) = 855((;;) where (S (0)) = Z7! 2 (5.} S (0)exp (—BH [S (2)]) and the
sum is taken to mean a discrete sum or integral in the continuous case. We know that within the Hamiltonian the
magnetic field h (Z) couples to the spin, and we assume this coupling is linear. Then using the definition of x, we find
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Problem 3.2

(a) Here k = (k1, ko, ..., kp) and & = (21,22, ...,2p)
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In the above sequence we have used the identity
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since the integral over y is from zero to infinity, and can be expanded f (y) = fo + 3./ (v — v0)?
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Now, using the saddle point approximation y becomes
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In the above sequence just about everything has been expanded e.x. f{ has been expanded to lowest order, etc.
(b) In the critical regime:
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Problem 3.3
The spin correlation function is

x(x) = (5(0)S(x)) = {Z}ilzc(zji/f)) izz

The bulk suzeptibility is given by
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Using the definitions for the critical exponents, & ~ r~" and x ~ r~7 close to the critical point, we get
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Note that this procedure is valid even if one assumes that x(x) = 4712~ (d=241) ceases to be valid below z = &.
In that case we can integrate only in between xz = 0 and x = af where a is a number between 0 and 1 determining
how long the short-range expression is valid. Changing the integral limit however does not affect the exponents, so
we would still get the same result. Corrections containing the integral at large distances (from x = af till z = o0)
give subleading contributions.

Problem 3.4

(a) The potential for a ferromagnet reads V(¢) = 3r¢* + 2ug? — jo

For negative r there are two minima at positive and negative magnetization ¢. Those are defined at the solutions to
V'(¢) = r¢ +ugp® — j = 0. For j = 0 we have ¢+ = ++/|r|/u. For finite (but small) j those get shifted to
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(b) The solution at ¢_ gets unstable once it ceases to be a maximum, i.e. if V"(¢_) becomes negative.
V(¢-) = r+3ud = —[r[+ 3ullr|/u—j//ulr]) = 2Ir| = jv/u/|r|
—Js = 2‘7’|3/2/\/a



|s

The coexistence region is in between the blue and the pink line.

(¢) The magnetization curve is different dependent on if we start with a positive or negative external field. Coming
from large positive j we find for the magnetization:
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While coming from large negative j we get
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The magnetization is plotted below. The blue line displays the function as given above, which actually still contains
the approximation of small external fields. This approximation does not necessarily hold: The coercive fields can be
pretty significant. For sizeable values of j, the solutions of ¢ look quite nasty, but solving numerically is not a big
deal. The numerical result is shown by the pink line.
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