
When charged carriers are introduced in otherwise insulating hosts, their

interaction with other degrees of freedom often induces a short-range effective

attraction, in addition to the usual (long-range) Coulomb repulsion. If only the

attraction existed, it would favor the formation of a high density liquid state

at low temperatures. In systems with a fixed number (i.e. average density) of

particles in a given volume, such liquid condensation would normally lead to the

phenomenon of global phase separation, where a part of the volume would be

occupied by a high density (liquid) state, and the remaining portion by a low

density (gas) phase.

In systems of charged carriers, however, such global phase separation is pro-

hibited by the requirement of global charge neutrality. What happens in such

cases? Let us first imagine that we start with a system of neutral particles with

an attractive interaction, leading to liquid condensation at a given temperature

Tc. If we rapidly cool the gas below Tc, the system will be trapped in a metastable

supercooled vapor phase. Thermally-induced density fluctuations then lead to

the process of homogeneous nucleation, and as soon as a liquid droplet of a su-

percritical size is formed, it will continue to grow in order to restore equilibrium.

We have already seen that the size dependence of the excess free energy of such

a droplet contains a bulk term describing the free energy gain of condensation

and the free energy cost due to surface tension

∆F (R) = −4π

3
∆flgR

3 + 4πσR2. (1)

As we know, the competition of these two terms tends to suppress droplets

of sub-critical size, while allowing larger droplets to grow without bound, until

the entire system assumes a phase-separated configuration.

Now let us imagine that weak but long-range Coulomb interaction is added

to these particles, so we have to account for the extra charging energy of forming

a high density droplet. Generally, there will be a density difference between a

liquid and a gas, such that δn = nliq−ngas > 0. The extra charge density within

the liquid droplet is therefore δρ = eδn.
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(1) Consider a spherical droplet of radius R, and calculate the charging energy

of such a droplet, assuming that the extra charge is uniformly distributed inside

the droplet.

(2) Add this charging energy to the free energy balance for the considered

droplet, and plot the expression as a function of R. How will the extra charging

term affect the dynamics of supercritical droplets?

(3) Determine the characteristic size of such Coulomb-limited droplets in

equilibrium by minimizing ∆F (R).

(4) What is the long-time dynamics of such Coulomb-limited droplets? Can

you imagine the process of ”inverse nucleation” by which such a droplet would

evaporate? Can you estimate the rate for such a process, following ideas for

conventional homogeneous nucleation?




