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HW4 SOLUTION

1) Charging energy of the droplet
To calculate energy of a charged droplet, we consider a uniformly charged sphere of radius R with the charge density

being equal to δρ = eδn. Using Gauss law (
∫

S
~E ~dA = Qenc

ǫ0
), it is easy to show that electric field inside/outside sphere

is given as

E(r) =

{

eδn
3ǫ0

r for r < R
eδnR3

3ǫ0r2 for r > R
(1)

Then the energy of such a charged sphere can be calculated as

WC =
ǫ0
2

∫
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4π(eδn)2

15ǫ0
R5

∝ cR5, (2)

where constant c = 4π(eδn)2

15ǫ0
.

2) Free energy balance
It was shown in the class that for uncharged droplet free energy balance is given as:

∆F (R) = −
4π

3
∆flgR

3 + 4πσR2, (3)

where the first term stands for the bulk free energy gain and the second one describes the energy cost due to surface
formation.

However, when the system is charged, the free energy balance includes an additional term accounting for the
charging energy of the droplet. In such a case the free energy balance reads:

∆F (R) = aR2 − bR3 + cR5, (4)

where we introduced the following constants: a = 4πσ, b = 4π
3 ∆flg.

The plot of ∆F (R) as function of R is shown in Fig.1. For small R, surface term prevails and ∆F ∝ R2; for large
R the Coulomb term wins and ∆F (R) ∝ R5 , in between δF (R) is mediated by R3 term.

FIG. 1: Free energy as function of the droplet radius R

.

For a supercooled gas, we expect liquid droplets being formed as a result of density fluctuation present in the system.
If a created droplet is too small R < Rc, the system trying to restore the equilibrium will move to the minimum free
energy state, which in this case correspond to R = 0. In other words, created droplet will shrink and disappear. If
somehow a sufficiently large droplet is created (larger then critical size R > Rc), it will continue to grow, lowering its
free energy. However, the droplet will not get exponentially large (like in uncharged system), instead, its size will be
limited to R̃c. Thus, we conclude, that for charged systems droplet’s size is limited by Coulomb energy, and system
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instead of being globally phase separated (with exponentially large droplet occupying the bulk of the system) will
achieve local phase separation in the form of the droplets with optimum size R̃c. Similar Coulomb-frustrated phase
separation scenario take place in high-Tc cuprates, manganites...

3) Characteristic size of Coulomb-limited droplets
To determine the characteristic size of such Coulomb-limited droplets in equilibrium, one needs to minimize the

free energy ∆F (R) with respect to the droplet radius R, and solve the corresponding equation

∂∆F (R)

∂R
= 0, (5)

which in our case is in the form:

5cR̃c

3
− 3bR̃c + 2a = 0 (6)

(trivial root R = 0 is neglected). In general, this equation can be solved numerically or analytically (for example,
using Cardano’s method). However a relatively simple analytical solution can be obtained when large dilute charged
droplets (with δn → 0) are formed in the case of a very small surface tension. For such large droplets we can ignore
the surface term, and the free energy balance takes the form:

∆F (R) = −bR3 + cR5. (7)

The characteristic droplet size, found as minimum of this expression is given as

R̃c =

√

3b

5c
. (8)

4) Long-time dynamics of Coulomb-limited droplets
Based on the arguments presented above in (1)-(3), we expect the following behavior of the system. For T < Tc,

as soon as system overcomes nucleation energy barrier determined by Enc = ∆F (Rc), (in other words, as soon as
R > Rc), droplets start to grow until they reach the optimum size R̃c. Because of thermal fluctuations such Coulomb-
limited droplets are not stable, and there is a finite probability that “inverse nucleation” process starts to happen.
Similarly to nucleation process, in order for such “inverse nucleation” to occur, system again has to overcome energy
barrier. Now we call it the ”evaporation barrier” Eev = ∆F (Rc) − ∆F (R̃c). If fluctuations within the droplets are
larger then Eev , system will finally find itself in the region of R < Rc. In order to minimize the free energy droplets
will finally disappear and liquid will evaporate. The rate of such “inverse nucleation” is proportional to the probability
of such process given by Boltzmann factor

P ∝ exp {−Eev/T } . (9)




