Phase Transitions: Homework 5 - Solution

Problem 5.1

Starting with a gas of density n. The probability of finding a particle in infinitesimal volume element ΔV is given by $P_{1}(\Delta V)=n \Delta V$. This implies that the chance of finding no particle within ΔV is given by

$$
P_{0}(\Delta V)=1-P_{1}(\Delta V)=1-n \Delta V
$$

If a volume V is empty with a probability of $P_{0}(V)$ then a volume $V+\Delta V$ is empty with a chance of

$$
P_{0}(V+\Delta V)=P_{0}(V) P_{0}(\Delta V)
$$

So we find

$$
\frac{\mathrm{d} P_{0}(V)}{\mathrm{d} V}=\frac{P_{0}(V+\Delta V)-P_{0}(V)}{\Delta V}=-n
$$

Solving the differential equation with the boundary condition $P_{0}(0)=1$ gives

$$
P_{0}(V)=\exp (-n V)
$$

Now, in 1D we can simply replace V by R. We know that $S(R)=S(0)$ if there has been no domain wall in between 0 and R and that if there has been a domain wall, then $S(R)= \pm S(0)$ with equal probability. I.e.:
$S(R)= \begin{cases}S(0) & \text { with probability } p_{+}=e^{-n R}+\frac{1}{2}\left(1-e^{-n R}\right)=\frac{1}{2}\left(1+e^{-n R}\right) \\ -S(0) & \text { with probability } p_{-}=\frac{1}{2}\left(1-e^{-n R}\right)\end{cases}$
So we find for the correlation function

$$
\begin{aligned}
\chi(R) & =\langle S(0) S(R)\rangle=S(0) S(0) \cdot\left(p_{+}-p_{-}\right) \\
& =S(0) S(0)\left(\frac{1}{2}\left(1+e^{-n R}\right)-\frac{1}{2}\left(1-e^{-n R}\right)\right) \\
& =S(0) S(0) e^{-n R}
\end{aligned}
$$

Problem 5.2

$$
\chi(\tau)=\operatorname{Tr}\left[\rho \mathbf{T}_{\tau}\{x(\tau) x(0)\}\right]
$$

For $\tau>0$ we have

$$
\chi(\tau)=\sum_{n}\langle n| \rho e^{\tau H / \hbar} x e^{-\tau H / \hbar} x|n\rangle
$$

Now use $\rho=Z^{-1} e^{-\beta H}$ to show that

$$
\begin{aligned}
\sum_{n} \rho|n\rangle & =\left(\sum_{m} e^{-\beta E_{m}}\right)^{-1}\left(e^{-\beta E_{0}}|0\rangle+e^{-\beta E_{1}}|1\rangle+\ldots\right) \\
& =\left(\sum_{m} e^{-\beta E_{m}}\right)^{-1} e^{-\beta E_{0}}\left(|0\rangle+e^{-\beta\left(E_{1}-E_{0}\right)}|1\rangle+\ldots\right) \\
& \stackrel{\beta \rightarrow \infty}{=} e^{-\beta E_{0}}|0\rangle
\end{aligned}
$$

So we find

$$
\begin{aligned}
\chi(\tau) & =e^{-\beta E_{0}}\langle 0| e^{\tau H / \hbar} x e^{-\tau H / \hbar} x|0\rangle \\
& =\sum_{n, m} e^{-\beta E_{0}} e^{\tau E_{0} / \hbar}\langle 0| x|n\rangle\langle n| e^{-\tau H / \hbar}|m\rangle\langle m| x|0\rangle \\
& =\sum_{n} e^{-\beta E_{0}} e^{-\tau\left(E_{n}-E_{0}\right) / \hbar}\langle 0| x|n\rangle\langle n| x|0\rangle \\
& \left.=\sum_{n} e^{-\beta E_{0}}|\langle 0| x| n\right\rangle\left.\right|^{2} e^{-\tau\left(E_{n}-E_{0}\right) / \hbar}
\end{aligned}
$$

Because the potential is symmetric, we know that the energy eigenstates $|0\rangle,|1\rangle$ etc must be of definite parity ± 1. Because x is of negative parity $\langle 0| x|1\rangle=0$. Consider now a system where just the ground and the first excited states have to be considered, i.e. the excitation energy to the second excited state $\Delta_{2}=E_{2}-E_{0}$ is large enough compared to τ / \hbar and $\Delta=E_{1}-E_{0}$ such that $e^{-\tau \Delta / \hbar} \gg e^{-\tau \Delta_{2} / \hbar}$.

$$
\begin{aligned}
\chi(\tau) & \left.=\sum_{n} e^{-\beta E_{0}}|\langle 0| x| n\right\rangle\left.\right|^{2} e^{-\tau\left(E_{n}-E_{0}\right) / \hbar} \\
& \left.\left.=e^{-\beta E_{0}}|\langle 0| x| 1\right\rangle\left.\right|^{2} \cdot e^{-\tau \Delta / \hbar}+e^{-\beta E_{0}}|\langle 0| x| 2\right\rangle\left.\right|^{2} \cdot e^{-\tau \Delta_{2} / \hbar}+\ldots \\
& \sim e^{-\tau \Delta / \hbar}
\end{aligned}
$$

