Homework Assignment \#5.

Problem 5.1. Consider a 1D Ising model, where each spin configuration can be represented by a corresponding configuration of domain walls. At sufficiently low temperatures, these domain walls are very dilute, and thus can be considered to be a gas of noninteracting "particles" with uncorrelated random positions and average density $n=e^{-\mu / T}$, with μ being the energy of a single domain wall. Calculate the average correlation function $\chi(R)=\langle S(0) S(R)\rangle$ by averaging over the (random) positions of domain walls, and show that

$$
\chi(R) \sim \exp \{-R / \xi\}
$$

where the correlation length $\xi \sim n^{-1}$. [Hint: Physically, the correlation function measures the probability that the spin $S(R)$ has the same orientation as $S(0)$. This will be possible if there are no domain walls at all in a region of size R. Since the domain walls are randomly positioned, there occasionally will be found such large "cavities", but this will occur with a very small probability. The corresponding probability is given by the Poisson distribution. Derive the probability of finding a "cavity" of diameter R in arbitrary dimensions in a gas of uncorrelated particles of a given density n. By using this result in $d=1$ prove the desired theorem.

Problem 5.2. Consider the imaginary time (Matsubara) auto-correlation function

$$
\chi(\tau)=\operatorname{Tr}\left[\rho \mathbf{T}_{\tau}\{x(\tau) x(0)\}\right]
$$

for a quantum particle. Assuming that the system is described by a Hamiltonian \mathbf{H} with known eigenvalues E_{n}, and eigenvectors $|n\rangle(n=0,1, \ldots)$, evaluate this correlation function at low temperatures and show that

$$
\chi(\tau) \sim e^{\tau \Delta / \hbar}
$$

with $\Delta=E_{1}-E_{o}$ being the splitting between the ground state and the first excited state.

