Homework Assignment \#6 - Solution

Section 2

We are trying to fit the data of conductivity as function of temperature of the form:

$$
\begin{equation*}
\sigma(T)=\sigma_{0}(n, T=0)+m T^{\alpha} . \tag{1}
\end{equation*}
$$

With the use of $\alpha=2$, the dependence of conductivity on T^{α} is linear, i. e. we get straight lines as plotted in the following figure:

Section 3

The fitting results for the previous section also gives us the following table for the conductivity σ_{0} extrapolated to $T=0$ corresponding to different densities n used:

n	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
σ_{0}	$-5.38 \mathrm{e}-4$	$5.94 \mathrm{e}-4$	0.00352	0.00787	0.0141	0.0235	0.0356	0.0472	0.0672	0.0908
n	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6
σ_{0}	0.123	0.159	0.208	0.258	0.322	0.394	0.467	0.559	0.646	0.754
n	2.7	2.8	2.9	3.0						
σ_{0}	0.847	0.961	1.09	1.22						

As we expect that:

$$
\begin{equation*}
\sigma_{0}=a\left(n=n_{c}\right)^{\mu}, \tag{2}
\end{equation*}
$$

one can find $a=0.147, n_{c}=0.747, \mu=2.61$. The figure showing this fitting is presented as follow:

Section 4

As we found $n_{c}=0.747 \times 10^{11} \mathrm{~cm}^{-2}$, we will focus on the data with densities around this value. The following figure shows that the curves $\sigma(T)$ on the \log-log plot will be straight at the density n_{c} located somewhere between two values $n=0.65 \times 10^{11} \mathrm{~cm}^{-2}$ and $n=0.7 \times 10^{11} \mathrm{~cm}^{-2}$.

This value of n_{c} may be considered to agrees with the value $n_{c}=0.747 \times 10^{11} \mathrm{~cm}^{-2}$ found in the section (3). In order to continue our work for the next sections, let's choose $n_{c}=0.65 \times 10^{11} \mathrm{~cm}^{-2}$. At this density, we can extract $x=2.39$.

Section 5

In order to plot $\sigma(T) / \sigma_{c}(T) \sim \sigma(T) / T^{x}$ on a log-log scale, we choose $n_{c}=0.65 \times 10^{11} \mathrm{~cm}^{-2}$. At this point, as described previously, we got $x=2.39$. The figure shows that the curve corresponding to the critical density $n_{c}=0.65 \times 10^{11} \mathrm{~cm}^{-2}$ is horizontal. All the curves with $n<n_{c}$ curve down at $T \rightarrow 0$ corresponding to the insulating phase, while all the curves with $n>n_{c}$ curve up at $T \rightarrow 0$
indicating the metallic phase.

Section 6

Using the data obtained for the section 5 and the assumption that:

$$
\begin{equation*}
T^{*}(n) \sim\left(\frac{\left|n-n_{c}\right|}{n_{c}}\right)^{\nu z}=\delta n^{\nu z}, \tag{3}
\end{equation*}
$$

we can find the values of $n \nu$, at which all the conductivities collapse onto a scaling function f, i.e.:

$$
\begin{equation*}
\sigma(n, T)=\sigma_{c}(T) f\left(\frac{T}{\delta n^{\nu z}}\right) . \tag{4}
\end{equation*}
$$

The following figure indicates explicitly the collapse mentioned above.

Section 7

The $T^{*}(n)$ is plotted in the $n-T$ phase diagram as follow:

Section 8

With the assumption (3), in the section 6 the exponent $\nu z=1.4$ for metallic regime, and $\nu z=1.3$ for insulating regime.

Section 9

In the section 4 , we found $x=2.39$ while in the section 6 and 8 we found $\nu z=1.4$. Therefore, t the conductivity exponent is

$$
\begin{equation*}
\mu=\nu z x=3.346 . \tag{5}
\end{equation*}
$$

This value may be considered to agree with $\mu=2.61$ estimated in the section 3 .

