
Homework Assignment #6.

Scaling Analysys of a Quantum Critical Point

In this assignment, we will borrow experimental data obtained by Dr. Dragana Popović

(NHMFL/FSU), who performed transport measurements on silicon MOSFETs, as a function

of carrier concentration n, and temperature T . Although the experiment is done at finite

temperature, a careful scaling analysis reveals the existence of a T = 0 quantum critical point,

which in this case corresponds to a metal-insulator transition. Following Dr. Popović, we

will carry out a such a scaling analysis, and extract the critical exponents characterizing

the critical point. This approach, similar to that used by Ben Widom in the heroic days

of thermal critical phenomena, is based on the phenomenological scaling hypothesis. It is

seen to work remarkably well, despite the current lack of accepted microscopic theory for this

phenomenon.

1. The experimental data are available in Excel format on our Web page. The data are

organized in columns, where each column represents the conductivity σ (in units of ~/e2)

for a given density n (in units of 1011cm−2), as a function of temperature T (in degrees

Kelvin). Download these data, then use whatever software you prefer to analyze it, using

the following procedure.

2. Let us first examine the form of the conductivity in the metallic phase (high density

regime). Here, we expect the temperature dependence to assume the following form

σ(T ) = σo +mTα.

Plot these data as a function of Tα. Try different exponents α until you get a straight

line. What is the value of α you obtain? The intercept obtained from such a plot is the

conductivityσo extrapolated to T = 0.
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3. Repeat the procedure for each density to obtain σo(n). We expect

σo = a(n− nc)µ,

at some critical concentration n = nc. Try to estimate nc and the conductivity exponent µ

by fitting σo(n) to this form [many software programs offer a nonlinear fitting routine; you

should use nc, a, and µ as fitting parameters.

4. Next, we perform the full ”dynamical scaling” analysis, as follows. First, plot a series

of curves on a log-log plot, showing σ(T ) as a function of temperature T , for each different

density n. We expect the conductivity to be a simple power-law function of temperature

σc(T ) ∼ T x

only at the critical density. On a log-log plot, thus only the curve corresponding to n = nc

will look like a straight line. This will allow you to immediately determine the critical

concentration nc. The slope is the exponent x. What do you get for x and nc? Does it agree

with the result of (3)?

5. Second, plot (again on a log-log scale) σ(T )/σc(T ) ∼ σ(T )/T x as a function of T .

Now the curve corresponding to the critical density will be horizontal (the ”separatrix”).

The metallic curves will curve ”up” at T −→ 0, while the insulating ones will curve ”down”

at T −→ 0.

6. Third, we want to collapse all the curves on a scaling function. More precisely, we

want to collapse separately all the metallic and all the insulating curves. To do this, pick a

density not too close to the transition. Then, plot the other curves as a function of T/T ∗(n).

You have to determine a different T ∗(n) for each density until all the curves collapse onto

a scaling function. Plot all the results in the scaling form; the scaling function consists of

a metallic and an insulating ”branch”. We expect scaling to break down if we are too far

from the quantum critical point, which is located at n = nc and T = 0. How broad is the

region of densities where scaling seems to work?
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7. The density-dependent temperature scale T ∗(n) represents a crossover temperature,

above which we have the quantum critical region, and below which the system is in the

metallic (for n > nc ) or the insulating (for n < nc ) regime. Plot T ∗(n) on the n− T phase

diagram. Label the location of the critical point, the metallic, insulating, and the quantum

critical regime.

8. We expect the crossover temperature to behave as

T ∗(n) ∼ δnνz,

where the reduced density δn = (n− nc)/nc. To determine the exponent νz, plot T ∗(n) on

a log-log scale as a function if |δn|. Do that separately for the metallic (δn > 0) and the

insulating (δn < 0) regimes. The slope is then the exponent νz. What do you get?

9. From standard scaling considerations (see lecture notes), we expect the T = 0 con-

ductivity exponent to be

µ = νz x.

Does the value you obtain from this approach agree with your estimate of µ in part (3)?


