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Phase Transitions - Homework 7 - Solutions

PROBLEM 7.2

(a) In 1 dimension, the free energy (per unit cell) is given by

f(t, h) = b−1f(K(b), h(b)),

where b is the scaling factor by which the lattice spacing got increased, h is the external

field and K is the effective interaction strength K = J/T . In the 1 dimensional case, where

Tc = 0, so we are dealing with a critical point at K∗ →∞. From decimation, we find

K ′ =
1

2
ln cosh(2K)

h′ = h(1 + tanh(2K))

In the environment of the critical point, at k � 1, this means

K ′ ≈ 1

2
ln(

1

2
e2K) = K − 1

2
ln 2

h′ ≈ h(1 + 1) = 2h

In each decimation step, db = 2, so

dK = −1

2
ln 2 → βK =

dK
d ln b

= −1

2

dh = h → βh =
dh

d ln b
=

h

ln 2

Each decimation steps drives us further away from the critical point towards K(b) = 0,

where from K(b) = K0 − 1
2
ln b we get

b = e2K0

At this point

h(b) = 2b · h = 2e2K0h

So we get

f(t, h) = b−1f(K(b), h(b)) = e−2K0f
(
0, h · 2e2K0

)
= e−2J/Tf

(
h · 2e2J/T

)
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With this we can calculate:

C = −∂
2f(0)

∂T 2
∝ −∂

2e−2J/T

∂T 2
=

2J

T 3
(1 +

2J

T
)e−2J/T

So at low temperatures we have

C ∝ T−4e−2J/T

As the exponential goes faster to 0 than any power law, C → 0 at T → 0.

(b) For h 6= 0 we obtain the low temperature dependence of the magnetization m and the

susceptibility χ by taking derivatives (??) w. r. t. h.

m =
∂f(t, h)

∂h

∣∣∣∣
h=0

∼ ∂

∂h
e−2J/Tf

(
h · 2e2J/T

)
= const.

χ =
∂2f(t, h)

∂h2

∣∣∣∣
h=0

∼ e2J/T at T → 0, χ blows up

PROBLEM 7.3

As discussed in class decimation only truly works in d = 1, because each decimation step

would create interactions between more and more particles, rendering each further step more

and more involved until reaching unsolvability. However decimation can be applied when

moving the bonds between the individual sites by the following scheme:

Considering N sites in an hypercubical lattice, in d dimensions, on has d · N bonds

total. Now you reduce the number of sites to M = N/(d + 1)[? ] which means you have

d ·N = d · (d+1) ·M bonds so each of the new sites is attached to d ·2d bonds. Now dividing

that by M times the average coordination number d + 1 (the average of 2d, which is the

coordination number of the edges of the new cube, and 2, the coordination number of the

sites along the sides of the cube) you have d bonds. What this amounts to is that the bond

strength increased: from K before decimation to d ·K after decimation.

From this point on it is very easy to get rid of half of the sites in the new lattice by

decimation. Just sum over the possible spin configurations of the sites at the sides of the

cube setting the interaction strength to d ·K and obtain:

K
′
=

1

2
ln cosh(2dK)

h
′
= h[1 + tanh(2dK)]
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(a) Setting d = 1 + ε and expanding in small ε, we find

K
′ − 1

2
ln cosh(2dK)− εK tanh(2K) +O(ε2) = 0

Thus the fixpoint is found by solving the above expression for K ′ = K = K∗. Using that

cosh(2K∗)→ 1
2
e2K

∗ and tanh(K∗)→ 1 for K∗ →∞ we find that

K∗ − (K∗ − 1

2
ln 2 + εK∗) = 0 for K∗ =

1

2ε
· ln 2

(b) Computation of the RG exponents:

K = K∗ + t where t = K −K∗

K ′ =
1

2
ln cosh(2d(K∗ + t))

expanding around small t

K ′ =
1

2
ln cosh(2dK∗) + d · t tanh(2dK∗) = K∗ + d tanh(2dK∗) · t

using K∗ ∼ 1/ε and expanding around small ε

K ′ = K∗ + (1 + ε) ∗ t = K∗ + t′

As by decimation we increased the lattice spacing by a factor b = 2, the RG approach for t

is t′ = bλt · t = 2λt · t. We can read off:

λt =
ε

ln 2
+O(ε2)

For the field strength we find

h′ = 2λhh (RG ansatz)

= h[1 + tanh(2dK∗)] = 2h+O(ε)

So

λh = 1 +O(ε)

(c) Using f(t, h) = td/λtf
(
1, h

tλh/λt

)
and t ∼ T − Tc

• correlation length ξ ∼ |t|−ν

ξ(t, h) = b · ξ(bλtt, bλhh) = t−1/λtξ
(
1, h

tλh/λt

)
so ξ(t, 0) ∼ t−1/λt and so

ν = 1/λt



4

• specific heat C ∼ |t|−α

C = −∂2f(t,h)
∂T 2 ∼ tt/λt−2 and so

α = 2− d

λt

• magnetization m(h = 0) ∼ |t|β

m = ∂f(t,h)
∂h

∣∣∣
h=0
∼ t(d−λh)/λt and so

β =
d− λh
λt

• magnetization at the critical point mc(h) ∼ h1/δ

mc(h) = tβf ′
(
1, h

tλh/λt

)
= tβf ′(y) where y = h

tλh/λt
. To obtain a finite value for t→∞

we need f ′(y) ∼ t−β. So it follows f ′(y) ∼ yβλt/λh and mc(h) ∼ hβλt/λh and so

δ = λh/βλt = λh/(d− λh)

• suszeptibility χ ∼ |t|−γ

χ = ∂2f(t,h)
∂h2

∣∣∣
h=0
∼ t(d−2λh)/λt and so

γ =
2λh − d
λt

• correlation function at the critical point χc ∼ ξ2−η

χc ∼ t−γ ∼ ξγ/ν and so we reproduces Fisher’s scaling law and obtain

η = 2− γ/ν = 2− 2λh + d

(d) Critical exponents for d = 2 (implying ε = 1, λt = 1
ln 2

, λh = 1):

ν = ln 2

α = 2 · (1− ln 2) = 0.614

β = ln 2 = 0.693

δ = 1

γ = 0

η = 2
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Critical exponents for d = 3 (implying ε = 2, λt = 2
ln 2

, λh = 1):

ν =
1

2
ln 2 = 0.347

α = 2− 3

2
ln 2 = 0.960

β = ln 2 = 0.693

δ =
1

2

γ = −1

2
ln 2 = −0.347

η = 3

This results, however, should not be trusted too much, since ε = 1, 2 is in contradiction to

our initial assumption ε� 1.

(e) The Migdal-Kadanoff approximation is exact on the diamond hierarchical lattice. This

can be explained by the iterative prescription how to build up a lattice, which goes as follows:

1. Between two points, draw a line with length L

2. Add two points to the sides of the line, such that their distance from the both the

original points is x · L. For this, it is necessary that x > 1
2

3. Connect each of the new points which each of the original points (but not among

themselves)

4. Erase the original line

5. Repeat this steps for all the new lines individually. The number x characterize the

lattice (it determines the opening angle of the ‘diamond’ cos(α
2
) = 1

2x
).

Now, we can do decimation by going through this iterative procedure backwards. As the

sites which where added in the last iteration step are only connected to two other sites,

we can directly sum over their spins, without having to move bonds. Therefore, as in 1

dimension, the Migdal-Kadanoff approach is exact.

The fractional dimension of the lattice is defined[? ] as

Df = lim
ε→0

lnN(ε)

ln(1
ε
)
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where ε is the length of the pieces constituing the fractal and N(ε) the number of pieces.

So for the diamond lattice we find

Df = lim
k→∞

ln 4k

ln 1
xk

=
ln 4

ln 1
x

The constraint x > 1
2
requires Df > 2 and in order for neighbouring diamonds not to overlap

we also need x < 1√
2
which renders Df < 4. Such, the fractional dimension of the diamond

lattice depends on x, but is generally a number between 2 and 4. This is the result one

would expect as the dimension of a fractal has to be larger or equal than its topological

dimension (in this case 2) and smaller or equal to its Hamel dimension (in this case 4).

[1] 2d hypercubes of with sidelength L make a big hypercube with sidelength 2 ·L. Probably one

would guess at first that M = N/2d, but we are still at bond-moving. Then after that step,

decimation gets rid of more sites, leaving N/2d after bond-moving and decimation. In other

words, you disconnect a certain number of sites by moving bonds away from them and making

them not to interact at all. The number M = N/(d+1) can be derived by counting the number

of edges and sides of a hypercube.

[2] Haussdorff dimension of a fractal


