Homework Assignment \#8.

Problem 8.1.

(a) Prove the validity of the Hubbard-Stratonovich (Gaussian) transformation

$$
\exp \left\{\frac{1}{2} \sum_{i j} S_{i} K_{i j} S_{j}\right\}=\int \prod_{i=1}^{N} d \phi_{i} \exp \left\{-\frac{1}{2} \sum_{i j} \phi_{i} K_{i j} \phi_{j}+\sum_{i j} S_{i} K_{i j} \phi_{i}\right\}
$$

whenever $K_{i j}$ is a real and symmetric matrix. To do this, note that in this case the matrix $K_{i j}$ can be diagonalized by a unitary transformation, and the integral on the right-hand side can be factored into a product of N Gaussian integrals.
(b) Starting with the action $S[\phi]$ obtained through through the HubbardStratonovich transformation

$$
S[\phi]=\frac{1}{2} \sum_{i j} \phi_{i} K_{i j} \phi_{j}-\sum_{i} \ln \cosh \left(\sum_{j} K_{i j} \phi_{j}+h_{i}\right),
$$

perform the momentum expansion to reduce the action to the Landau form

$$
S[\phi]=\frac{1}{2} \int d \mathbf{x} \phi(\mathbf{x})\left[r-\nabla^{2}\right] \phi(\mathbf{x})+\frac{u}{4} \int d \mathbf{x} \phi^{4}(\mathbf{x})-\int d \mathbf{x} h(\mathbf{x}) \phi(\mathbf{x}) .
$$

Dtermine the values of the Landau parameters r and u in terms of $K=\beta J$.

Problem 8.2.

(a) Consider an operator of the form

$$
S_{m}=w_{m} \int d \mathbf{x} \phi^{m}(\mathbf{x}),
$$

and carry out the power-counting analysis within a Gaussian model, to demonstrate that the corresponding scaling exponent is

$$
\lambda_{w}(m)=m-(m-2) d / 2 .
$$

(b) Carry out the analysis of dangerously irrelevant variables to show that the exponent $\delta=3$ for all $d>d_{u c}$. [Hint: to determine δ, concentrate to the behavior at the critical point $(r=0)$, and choose $b^{\lambda_{j}} j=1$. The rest of the analysis is similar as for the calculation of β.]

