
Homework Assignment #8.

Problem 8.1.

(a) Prove the validity of the Hubbard-Stratonovich (Gaussian) transforma-

tion
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whenever Kij is a real and symmetric matrix. To do this, note that in this case

the matrix Kij can be diagonalized by a unitary transformation, and the integral

on the right-hand side can be factored into a product of N Gaussian integrals.

(b) Starting with the action S[φ] obtained through through the Hubbard-

Stratonovich transformation
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perform the momentum expansion to reduce the action to the Landau form
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Dtermine the values of the Landau parameters r and u in terms of K = βJ .

Problem 8.2.

(a) Consider an operator of the form

Sm = wm

∫
dx φm(x),

and carry out the power-counting analysis within a Gaussian model, to demon-

strate that the corresponding scaling exponent is

λw(m) = m− (m− 2)d/2.

(b) Carry out the analysis of dangerously irrelevant variables to show that

the exponent δ = 3 for all d > duc. [Hint: to determine δ, concentrate to the

behavior at the critical point (r = 0), and choose bλjj = 1. The rest of the

analysis is similar as for the calculation of β.]


