Phase Transitions - Homework 8: Solutions

Problem 8.1

(a) Any real symmetric matrix K can be diagonalized by a similarity transformation $\tilde{K}=A^{-1} T A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ where A is the transformation matrix and the λ_{i} are the eigenvalues of K. Defining the field and spin vectors in the new basis $\tilde{S}=A S$ and $\tilde{\phi}=A \phi$ we can write:

$$
\begin{aligned}
Z & =\int \prod_{i=1}^{n} \mathrm{~d} \phi_{i} \exp \left[-\frac{1}{2} \phi^{T} K \phi+S^{T} K \phi\right] \\
& =\int \prod_{j=1}^{n} J^{-1} \mathrm{~d} \tilde{\phi}_{j} \exp \left[-\frac{1}{2} \tilde{\phi}^{T} \tilde{K} \tilde{\phi}+\tilde{S}^{T} \tilde{K} \tilde{\phi}\right]
\end{aligned}
$$

where J is the Jacobian of the basis transformation

$$
=\prod_{j=1}^{n} J^{-1}\left(\int \mathrm{~d} \tilde{\phi}_{j} \exp \left[-\frac{1}{2} \lambda_{j} \tilde{\phi}_{j}^{2}+\tilde{S}_{j} \lambda_{j} \tilde{\phi}_{j}\right]\right)
$$

now we can use the Gaussian identities to obtain

$$
\begin{aligned}
& =\prod_{j=1}^{n} J^{-1}\left(\frac{2 \pi}{\lambda_{i}}\right) \exp \left[\frac{\lambda_{i} S_{i}^{2}}{2}\right] \\
& \propto \exp \left[\frac{1}{2} S^{T} K S\right]
\end{aligned}
$$

For the partition function, the prefactors can be completely ignored as the just give additive constants under the Log.
(b)

$$
S[\phi]=\int \mathrm{d} x \frac{1}{2} \phi^{T} K \phi-\ln \cosh (K \phi+h)
$$

then expand around small fields

$$
\approx \int \mathrm{d} x \frac{1}{2} K \phi^{2}-\ln \cosh (K \phi)-h \tanh (K \phi)
$$

and also expand in small fields

$$
\begin{aligned}
& \approx \int \mathrm{d} x \frac{1}{2} K \phi^{2}-\frac{1}{2} K^{2} \phi^{2}+\frac{1}{12} K^{4} \phi^{4}-h K \phi \\
& =K \int \mathrm{~d} x\left[\frac{1}{2}(1-K) \phi^{2}+\frac{1}{12} \phi^{4} K^{3}-h \phi\right]
\end{aligned}
$$

Again, the overall prefactor is not important. Going into momentum space $\phi(x) \rightarrow \int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \phi(k)$ we can write $K(k)=f_{K} \sum_{i}^{d} \cos \left(k_{i} a\right)$.
In a hypercubic lattice with coordination number $z=2 d$ for symmetry reasons all k_{i} are equal. We are only interested in the long-ranged interactions and therefore expand in small momenta
$K(k) \approx \frac{1}{2} f_{K} z\left[1-\frac{1}{2} a^{2} k^{2}+\mathcal{O}\left(k^{4}\right)\right] \rightarrow K(x)=K z *\left(1+\nabla^{2}\right)$.
Plugging that in we get

$$
S[\phi] \sim \int \mathrm{d} x\left(\frac{1}{2} \phi(x)\left[1-K z-\nabla^{2}\right] \phi(x)+\frac{1}{4} \phi(x)^{4} \frac{K z}{3}-h(x) \phi(x)\right)
$$

Comparing with the Landau form and using $K_{c}=z$ one reads off:

$$
r=1-K z=\left(K_{c}-K\right) / K_{c} \sim(T-T c)
$$

and

$$
u=\frac{K z}{3}=\frac{K}{3 K_{c}} \approx \frac{1}{3} \text { close to the critical point }
$$

Problem 8.2

(a) Requiring that under rescaling $x \rightarrow x b$ the operator $\frac{1}{2} \int \mathrm{~d}^{d} x \nabla^{2} \phi^{2}$ remains constant we found in class that $\phi \rightarrow b^{1-d / 2} \phi$. From that, it is easy to see that

$$
w_{m} \int \mathrm{~d}^{d} x \phi^{m}(x) \rightarrow w_{m} \int \mathrm{~d}^{d} b^{d} x b^{m(1-d / 2)} \phi^{m}
$$

Absorbing the rescaling into the coefficient w_{m} therefore means
$w_{m} \rightarrow w_{m} \cdot b^{d+m(1-d / 2)}$ so

$$
\lambda_{w}=m-(m-2) d / 2
$$

(b) We found in class that the field strength in terms of the parameters r, $j, u, w \ldots$ behaves under scaling as

$$
\phi(r, u, j, w, \ldots)=b^{-d+\lambda_{j}} \phi\left(b^{\lambda_{r}} r, b^{\lambda_{j}} j, b^{\lambda_{u}} u, b^{\lambda_{w}} w, \ldots\right)
$$

We want to figure out the critical exponent δ, determined by the behavior of ϕ at the critical point $(r \rightarrow 0) \phi_{c} \sim j^{1 / \delta}$ Naively, one would choose $b^{\lambda_{j}} j=1$, i.e. $b=j^{-1 / \lambda_{j}}$ and from

$$
\phi(r, u, j=1, w, \ldots)=j^{\left(d-\lambda_{j}\right) / \lambda_{j}} \phi(0,0,1,0 \ldots)
$$

and end of with $\delta=\lambda_{j} /\left(d-\lambda_{j}\right)=\frac{d+2}{d-2}$.
However, consider the free energy:

$$
F(r, u, j, w \ldots)=\frac{1}{2} r \phi^{2}+\frac{1}{4} u \phi^{4}-j \phi+\mathcal{O}\left(\phi^{w}\right) .
$$

So at the critical point $r=0$ the minimum is found at

$$
\phi \approx\left(\frac{j}{u}\right)^{1 / 3}
$$

So in fact,

$$
\phi(0,1, u(b) \rightarrow 0,0, \ldots) \sim u^{-1 / 3} \sim b^{-\lambda_{u} / 3} \sim j^{\lambda_{u} /\left(3 \lambda_{j}\right)}
$$

So actually

$$
\phi_{c}=j^{\left(d-\lambda_{j}\right) / \lambda_{j}+\lambda_{u} /\left(3 \lambda_{j}\right)}
$$

and this gives

$$
\delta=\frac{3 \lambda_{j}}{3 \lambda_{j}} 3\left(d-\lambda_{j}\right)+\lambda_{u}
$$

With $\lambda_{j}=1+d / 2$ and $\lambda_{u}=4-d$ this gives

$$
\delta=3
$$

