Phase Transitions - Homework 9

Problem 9.1

In ϕ^{4} theory, the following diagrams contribute to the renormalization:

Figure 2: One loop contribution to the 4 -point-function of ϕ^{4} theory, affecting the renormalization of u. A, B, C, D, E, F are labels for the respective fields.
Figure 1: One loop contribution to the 2-point-function of ϕ^{4} theory, affecting the renormalization of $r . \mathrm{A}, \mathrm{B}, \mathrm{C}$ are labels for the respective fields.

In ϕ^{4} theory to $\mathcal{O}(n)$, the action reads:

$$
\begin{equation*}
S\left[\phi_{1,2, \ldots n}\right]=\frac{1}{2} \sum_{\alpha=1}^{n} \int \mathrm{~d} \mathbf{x} \phi_{\alpha}(\mathbf{x})\left[r-\nabla^{2}\right] \phi_{\alpha}(\mathbf{x})+\frac{u}{4} \int \mathrm{~d} \mathbf{x} \sum_{\alpha, \beta=1}^{n} \phi_{\alpha}^{2}(\mathbf{x}) \phi_{\beta}^{2}(\mathbf{x}) \tag{1}
\end{equation*}
$$

Let us list all the diagrams that contribute to the renormalization of r :

A	B	C	number of diagrams	multiplicity
α	α	α	1	3
α	β	α	$n-1$	1

In class, we went through the calculation for ϕ^{4} theory of one field, so only the first process of the above table was present. We found

$$
n=1: \quad \beta_{r}=2 r+3 \Omega_{d} \frac{u}{r+\Lambda^{2}}
$$

where the first term reflects just the scaling of the operator itself, while the second term contains the contribution from the 1 loop diagram. In ϕ^{4} theory to $\mathcal{O}(n)$, we have to add the processes from the second line and get

$$
\text { general } n: \quad \beta_{r}=2 r+(n+2) \Omega_{d} \frac{u}{r+\Lambda^{2}}
$$

The diagrams that contributing to the renormalization of u are:

	A	B	C	D	E	F	number of diagrams	multiplicity
ϕ_{α}^{4} interactions	α	α	α	α	α	α	1	9
	α	α	β	β	α	α	$n-1$	1
$\phi_{\alpha}^{2} \phi_{\beta}^{2}$ interactions	α	α	α	α	β	β	1	3
	α	α	β	β	β	β	1	3
	α	β	α	β	α	β	4	1
	α	α	γ	γ	β	β	$n-2$	1

We see that in total the $n+8$ diagrams contribute to the interaction of 4 identical ϕ as well as to the interaction of two pairs of different fields. This justifies the introduction of one common u in equ. (??). Again comparing with the $n=1$ solved in class

$$
n=1: \quad \beta_{u}=(4-d) u-9 \Omega_{d} \frac{u^{2}}{\left(r+\Lambda^{2}\right)^{2}}
$$

we get for the general case

$$
\text { general } n: \quad \beta_{u}=(4-d) u-(n+8) \Omega_{d} \frac{u^{2}}{\left(r+\Lambda^{2}\right)^{2}}
$$

As we did in the lecture, let us intrduce $\varepsilon=4-d, a=\frac{3 \Omega_{d}}{\Lambda^{2}}$ and $b=\frac{3 \Omega_{d}}{\Lambda^{4}}$. The beta-functions then read

$$
\begin{aligned}
& \beta_{r}=2 r+(n+2) \Omega_{d} \frac{u}{r+\Lambda^{2}} \sim 2 r+\frac{n+2}{3} a u-\frac{n+2}{3} b u r \\
& \beta_{u}=(4-d) u-9 \Omega_{d} \frac{u^{2}}{\left(r+\Lambda^{2}\right)^{2}} \sim \varepsilon u-\frac{n+8}{3} b u^{2}
\end{aligned}
$$

We find the Gaussian fixed point at $r_{0}^{\star}=u_{0}^{\star}=0$. Expanding around that fixed point gives:

$$
\binom{\frac{\mathrm{d} r}{\mathrm{~d} l}}{\frac{\mathrm{~d} u}{\mathrm{~d} l}}=\left(\begin{array}{cc}
2 & \frac{n+2}{3} a \\
0 & \varepsilon
\end{array}\right)\binom{\delta r}{\delta u}
$$

and we find the exact same exponents as for the $n=1$ case:

$$
\lambda_{1}^{0}=2 \quad \text { and } \quad \lambda_{2}^{0}=\varepsilon
$$

The Wilson-Fisher fixed point is found at

$$
u_{\mathrm{WF}}^{\star}=\frac{3 \varepsilon}{(n+8) b} \quad \text { and } \quad r_{\mathrm{WF}}^{\star}=-\frac{n+2}{2(n+8)} \frac{a}{b} \varepsilon
$$

Expanding around the WF fixed point gives:

$$
\binom{\frac{\mathrm{d} r}{\mathrm{~d} l}}{\frac{\mathrm{~d} u}{\mathrm{~d} l}}=\left(\begin{array}{cc}
2-\frac{n+2}{n+8} \varepsilon & \frac{n+2}{3} a+\frac{(n+2)^{2}}{6(n+8)} a \varepsilon \\
0 & -\varepsilon
\end{array}\right)\binom{\delta r}{\delta u}
$$

and we find the following exponents:

$$
\lambda_{1}^{\mathrm{WF}}=2-\frac{n+2}{n+8} \varepsilon \quad \text { and } \quad \lambda_{2}^{\mathrm{WF}}=-\varepsilon
$$

Problem 9.2

The action

$$
\begin{aligned}
S\left[\phi_{1,2, \ldots n}\right] & =\frac{1}{2} \sum_{\alpha=1}^{n-1} \int \mathrm{~d} \mathbf{x} \phi_{\alpha}(\mathbf{x})\left[r-\nabla^{2}\right] \phi_{\alpha}(\mathbf{x})+\frac{1}{2} \int \mathrm{~d} \mathbf{x} \phi_{n}(\mathbf{x})\left[r+g-\nabla^{2}\right] \phi_{n}(\mathbf{x}) \\
& +\frac{u}{4} \int \mathrm{~d} \mathbf{x} \sum_{\alpha, \beta=1}^{n-1} \phi_{\alpha}^{2}(\mathbf{x}) \phi_{\beta}^{2}(\mathbf{x})+\frac{v}{2} \int \mathrm{~d} \mathbf{x} \sum_{\alpha=1}^{n-1} \phi_{\alpha}^{2}(\mathbf{x}) \phi_{n}^{2}(\mathbf{x})+\frac{w}{4} \int \mathrm{~d} \mathbf{x} \phi_{n}^{4}(\mathbf{x})
\end{aligned}
$$

describes the dynamics of $n-1$ fields of mass r, labelled by α, β and one field ϕ_{n} of mass $r+g$. There exist three types of ϕ^{4} couplings:

- proportional to coupling constant u : connecting 4 light fields ϕ_{α}^{4} or $\phi_{\alpha}^{2} \phi_{\beta}^{2}$ (As before, introducing a common u will be justified by the common RG running)
- proportional to coupling constant u : connecting 2 light fields and 2 heavy fields $\phi_{\alpha}^{2} \phi_{n}^{2}$
- proportional to coupling constant u : connecting 4 heavy fields ϕ_{n}^{4}

Puzzling together possible diagrams for the renormalization of r and $r+g$ we find:

	A	B	C	coupling	propagators	diagrams	multiplicity
r	α	α	α	u	$\left(r+\Lambda^{2}\right)^{-1}$	1	3
	α	β	α	u	$\left(r+\Lambda^{2}\right)^{-1}$	$n-2$	1
	α	N	α	v	$\left(r+g+\Lambda^{2}\right)^{-1}$	1	3
$r+g$	N	α	N	v	$\left(r+\Lambda^{2}\right)^{-1}$	$n-1$	1
	N	N	N	w	$\left(r+g+\Lambda^{2}\right)^{-1}$	1	3

So we get:

$$
\begin{aligned}
\frac{\mathrm{d} r}{\mathrm{~d} l} & =2 r+(n+1) \frac{u}{r+\Lambda^{2}}+\frac{v}{r+g+\Lambda^{2}} \\
\frac{\mathrm{~d}(r+g)}{\mathrm{d} l} & =2(r+g)+(n-1) \frac{v}{r+\Lambda^{2}}+3 \frac{w}{r+g+\Lambda^{2}}
\end{aligned}
$$

For the renormalization of the couplings we find the following contributions:

	A	B	C	D	E	F	coupl.	propagators	diagrams	mult.
$\left(\phi_{\alpha}^{4}\right)$	α	α	α	α	α	α	u^{2}	$\left(r+\Lambda^{2}\right)^{-2}$	1	9
	α	α	β	β	α	α	u^{2}	$\left(r+\Lambda^{2}\right)^{-2}$	$n-2$	1
	α	α	n	n	α	α	v	$\left(r+g+\Lambda^{2}\right)^{-2}$	1	1
$\left(\phi_{\alpha}^{2} \phi_{\beta}^{2}\right)$	α	α	α	α	β	β	u^{2}	$\left(r+\Lambda^{2}\right)^{-2}$	1	3
	α	α	β	β	β	β	u^{2}	$\left(r+\Lambda^{2}\right)^{-2}$	1	3
	α	β	α	β	α	β	u^{2}	$\left(r+\Lambda^{2}\right)^{-2}$	4	1
	α	α	γ	γ	β	β	u^{2}	$\left(r+\Lambda^{2}\right)^{-2}$	$n-3$	1
	α	α	n	n	β	β	v^{2}	$\left(r+g \Lambda^{2}\right)^{-2}$	1	1
v	α	α	α	α	n	n	$u v$	$\left(r+\Lambda^{2}\right)^{-2}$	1	3
	α	α	β	β	n	n	$u v$	$\left(r+\Lambda^{2}\right)^{-2}$	$n-2$	1
	α	α	n	n	n	n	$v w$	$\left(r+g+\Lambda^{2}\right)^{-2}$	1	3
	α	n	α	n	α	n	v^{2}	$\left(\left(r+\Lambda^{2}\right)\left(r+g+\Lambda^{2}\right)\right)^{-1}$	4	1
w	n	n	α	α	n	n	v^{2}	$\left(r+\Lambda^{2}\right)^{-2}$	$n-1$	1
	n	n	n	n	n	n	w^{2}	$\left(r+g+\Lambda^{2}\right)^{-2}$	1	9

So we get:

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} l} & =\varepsilon u-(n+7) \frac{u^{2}}{\left(r+\Lambda^{2}\right)^{2}}-\frac{v^{2}}{\left(r+\Lambda^{2}\right)^{2}} \\
\frac{\mathrm{~d} v}{\mathrm{~d} l} & =\varepsilon v-(n+1) \frac{u v}{\left(r+\Lambda^{2}\right)^{2}}-3 \frac{v w}{\left(r+g+\Lambda^{2}\right)^{2}}-4 \frac{v^{2}}{\left(r+g+\Lambda^{2}\right)\left(r+\Lambda^{2}\right)} \\
\frac{\mathrm{d} w}{\mathrm{~d} l} & =\varepsilon w-(n-1) \frac{v^{2}}{\left(r+\Lambda^{2}\right)^{2}}-9 \frac{w^{2}}{\left(r+g+\Lambda^{2}\right)^{2}}
\end{aligned}
$$

