Problem 1

1 a) Usually thermodynamic limit refers to the case when the system size is
infinity. The second order phase transitions are usually accompanied by a spon-
taneous symmetry breaking. As it turns out, a spontaneous symmetry breaking
can not happen at finite systems. It only happens in thermodynamic limit. This
can be easily justified based on the ergodicity breaking argument when system
is prevented to occupy all its possible states. According to Boltzmann’s ergodic
hypothesis, at equilibrium system intends to go though all available states. The
time it takes to reach each state is proportinal to the probability of reaching
each configuration and diverges exponentially with the system size. For finite
size systems this time is relatively short, while in thermodynamic limit the sys-
tem will be “stuck” for a long time in some subspace.

b) Spontaneous symmetry breaking can happen in (i) 3d Ising ferromagnet
only at h = 0. In the presence of a weak external magnetic field, the symmetry
of the system is already broken. So, there is no finite temperature second order
transition in 3D Ising ferromagnet. At finite external field (ii) 2d antiferromag-
net has second order phase transition because the exteral field does not effect
staggard magnetisation. For the Heisenberg model there is no finite tempera-
ture phase transition in (iv) 2d Heisenberg antiferromagnet (d;. = 2), but it can
happen in (iii) 3d Heisenberg antiferromagnet.

c) Using the fact that close to the critical point, the order parameter is a
small quantity, the free energy can be written as a Taylor expansion of the
order parameter, leading to the given values of critical exponents which are
independent of the numerical values of the coupling constant u, v, w, etc. The
action is assumed to be an analytic function of the order parameter, consistent
with the symmetries of the problem.
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In any mean field theory such an action defines the corresponding values of
the critical exponents. The particular form of the action depends on the sym-
metry and dimension of the problem. Power counting argument is important
when one has to decide which term to drop in the action. For example, terms
of the form [ w,,¢™d"z are irrelevant at d(m) = -2 and thus can be ignored.

d) The critical exponents do not depend on the precise form of the crystal
lattice because all the information about the lattice is hidden in the coupling
constants of corresponding mean field equations. At the same time, the values
of the critical exponents do not depend on the coupling constants, but depend
only on the form of the action. Thus, we may conclude that critical exponents
depend on the symmetry of the order parameter, dimensionality, and the nature
of the critical point; and are not effected by the values of coupling constants,
type of the lattice or the form of the Hamiltonian.



e) In 1d system with short-range interaction, there is no finite temperature
phase transition because moving the domain walls costs us no energy. The en-
tropy S ~ Ln(L) (L is the system size) always wins. Thus, putting domain
walls will always lower the free energy no matter how low the temperature is.
So, we can put the domain walls randomly positioned such that the ordered
phase is destroyed at any finite temperature.

f) There can not be any finite temperature phase transition for continuous
symmetry systems. It was shown that for a system with O(N) symmetry in
d-dimension, the critical temperature is T, ~ (d — 2)/(N — 2). Thus, for N > 3
the critical temperature T, = 0 for d = 2.

g) 1d system can display a finite temperature phase transition if the inter-
action is long range. Since moving the domain wall costs us energy of order of
L compared to the entropy S ~ Ln(L). Then the free energy will be minimum
at limited domain walls number which results in the ordered phase at finite
temperature.

h) At finite T near the critical point, the correlation length diverges. Thus,
the behavior of the system is determined by the regions whose size is larger
than the length scale at which quantum effects are important. But even if one
writes the quantum case of the Landau theory, the action looks the same as in
the classical case but for d + 1-dimension. The imaginary time plays the role of
the extra dimension. At finite temperature, however, there is a finite imaginary
time cut-off. Close to T, spacial fluctuations are much larger than this cut-off,
and we end up with the action which looks the same as the classical version of
the problem.



Problem 2

Consider a lattice-gas model given by the Hamiltonian:

=-V Z nin; — uZnZ, (1)
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where n; = 0,1 are the lattice site occupation numbers, and p is a chemical
potential.
a) Let
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Then Hamiltonian in eq.1 is transformed as the following:
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here z is a number of the nearest neighbors.
This can be written as
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We may also conclude that

Hpe=H; - Ey (8)

and the grand partition function for the lattice-gas model can be wriiten as
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Z1 is the partition function of the Ising model.

From eq.2 we can determine the relationship between the average density
< n > and magnetization m =< § >. Simply averaging both sides of this
equation we get
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b) Taking into account that half-filling < n >= 1/2 corresponds to m = 0
(from eq.10) at zero external field, we obtain from eq.6
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This can also be obtained from the direct calculation of the average density,
ie.
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where the partition function of Ising model Z; in the mean-field approach is
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Using this and expression for constant Fy, we obtain:
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Putting < n >= % in the last expression, we obtain the corresponding value
of the chemical potential
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c¢) In the mean-field approach, the Weiss self-consistency condition reads
m = tanh(Bh + BzJm) (16)

Substituting the found above expressions for m, h and J into eq.16, we find
a corresponding condition for the lattice-gas model:
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To determine the critical temperature, we fix the chemical potential u = —%,

and obtain: V(2 )
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This equation can be solved graphically:
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Figure 1: Graphical solution of “Weiss self-consistency condition” for the lattice-
gas model at p = —Vz/2.

For T' < T, there are two distinct solutions of eq.18, while for 7" > T, there
is only one intersection at < n >= 0.5.

At T = T, the only intersection is still at <n>=0.5 but now both curves
have the same slope there. This allows us to determine 7, by calculating slopes
of these two curves at < n >= 0.5, i.e.
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We could have obtained this result with much less efforts, just by using the
fact that for the Ising model T, = zJ, accordingly, for the lattice gas model
T. = 2V/4.

Plotting < n > as function of p (Fig.2-a), we can see that at half-filling
W= —% there is a jump in the density < n > for T' < T'c, just like in the Ising
model at A = 0. Such a discontinuity in the order parameter is the feature of
the first order transition.

The corresponding i — T" phase diagram is shown in Fig2-b. For a chemical
potential 4 < —V'z/2 we obtain low density (negative magnetization) gas; and
in the region where y > —V2/2 we have a high density (positive magnetization)
liquid.

density vs chemical potential; g=Tc/T Chemical potential-Temperature phase diaram
1 T T T 2
a) | | b T T T
- 1 I ]
1 20
1 5 Tc
| I - B
| 2 1 | 1
0 0 05 1

Figure 2: p4 — T phase diagram

d) To find < n > as function of p and T', we expand self-consistency condition
(eq.17) around critical point T.. Let g = %
We first rewrite eq.17 in the form:

2<n>—1=tanh<g(2<n>—1)+ﬁ(%+g)), (20)

where we used that T, = —Vz/4 .
We invert this expression to obtain the equation of states.
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Near the critical point 2 <n > —1 < 1 and % + 4 < 1 so we can expand
eq.21 and obtain the equation of states in the form:
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Putting g = 1 in eq. 22, we get
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e) Pressure can be calculated from
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where F' is a free energy of the lattice-gas model, V' = VN is the volume of
the system, Vj is the volume of a unite cell, and N is the total number of the
lattice sites.

Taking into acount expression for Z5¢ (eq. 9) and Z;(eq. 13), we obtain
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f) Below we present the phase diagram as function of the pressure p and
average density < n > (Fig.3).

To obtain this diagram, one can eliminate a chemical potential x4 from eq.
27 using self-consistensy condition (eq. 17) for different values of < n >. Then
plot the pressure p as function of the density < n > at corresponding values of
1 at some constant temperature T'.

In Fig 3 we plotted p as function of < n > for temperatures above and
below T.. The dashed line indicates the values of p and < n > at half-filling
w=-Vz/2(h=0). For T < T, and u = —Vz/2 there are two solutions of
eq.17 with the same pressure (free energy), while above T, system has only one
solution. Thus, below T, at u = —Vz/2 system exhibits phase separation, i.e.
there is a coexistence of the liquid and the gas in the system.

(27)
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Figure 3: p-n phase diagram. V =2, g =T,./T.

g) In this problem, using a linear transformation we have mapped the lattice
gas model into the magnetic Ising model.

Consequently, the lower and upper critical dimensions should be the same
as in the Ising model case. Thus,

die =1 (28)
and
dyc = 4 (29)



Problem 3

3. a) We use the change variables

e = (x+2)/2
¢ = @)
Oz, z’)

(e, )

Then Fourier transform of Sj,-is

Jacobian
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Integrating over € gives us a delta Dirac function §(ky1+k2), and using y = Ck
we obtain:
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As a result, we get the square term (eq. 32) adding to the ordinary short range
¢*model
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So we have different form of the action S of ordinary ¢*- theory in small k
expansion when 0 < o < 2. In this case, we can ignore k2 term in the quadratic
part. If o > 2, we have the same result as the ordinary ¢*- theory (discussed
in the lecturer notes)
b) We are interesting in the range 0 < o < 2. Using Hubbard-Stratonovich
transformation in real space we get:
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N

z- [ DwD&D&*exp{% S [ migR+ g + ulkl?) - 1N [ dw2<x>}
a=1

(33)



Integrating all states except @ = 1 and rewriting the equation for the action
(eq.33) with rescaling ¢11 = ¢1/v/N: In the large N limit we can use saddle
point method:

S = =N [ dkou (k) upk) = K)ow (k) = o-Nu [ dki?()
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from equation (5) we get :
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So we will get :
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At the critical temperature ¢, = 0,
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Subsceptibility can be find by setting ¢, = 0 in the saddle -point condition and
T =1+ uh,, we can get the equation:
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finally, we can rewrite this equation as:

u,,:l/a’fl

2rwl/o-1(1 — o)

r+dér = 7+ (41)
We can see that the linear term dominates when o < 1/2 and v = 1 (mean
field theory) . If ¢ > 1/2 the second term dominates and we have y = o/(1—0).
c¢) The correlation length can be found by determining non local susceptibil-
ityat r=0

(;C) B i Oodkeikz
X - 27T 0 kg
1 To 1
- o)
7T( o)sin 5 ) 71=s
1
X@) (42)

In our case d = 1 we also have the definition of anomalous dimension x(z)
2177 therefore n = 2 — 0.
Use Kadanoff relation to find other exponents:

v = ov
ifo<1/2 then v=1/o,
| (43)
ifo>1/2 then v=1/(1-o0)
(44)

We conclude that at o > 1 our result for v and v becomes infinite and there is
no phase transition. At o < 1, exponents ~, v are finite and phase transition
exist at finite temperature. Special case at 0 = 1, v, v are also logarithmically
divergent or we can say at o = 1 (marginal case), there is no phase transition
at finite temperature.
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