
Problem 11 a) Usually thermodynamic limit refers to the case when the system size isin�nity. The second order phase transitions are usually accompanied by a spon-taneous symmetry breaking. As it turns out, a spontaneous symmetry breakingcan not happen at �nite systems. It only happens in thermodynamic limit. Thiscan be easily justi�ed based on the ergodicity breaking argument when systemis prevented to occupy all its possible states. According to Boltzmann's ergodichypothesis, at equilibrium system intends to go though all available states. Thetime it takes to reach each state is proportinal to the probability of reachingeach con�guration and diverges exponentially with the system size. For �nitesize systems this time is relatively short, while in thermodynamic limit the sys-tem will be �stuck� for a long time in some subspace.b) Spontaneous symmetry breaking can happen in (i) 3d Ising ferromagnetonly at h = 0. In the presence of a weak external magnetic �eld, the symmetryof the system is already broken. So, there is no �nite temperature second ordertransition in 3D Ising ferromagnet. At �nite external �eld (ii) 2d antiferromag-net has second order phase transition because the exteral �eld does not e�ectstaggard magnetisation. For the Heisenberg model there is no �nite tempera-ture phase transition in (iv) 2d Heisenberg antiferromagnet (dlc = 2), but it canhappen in (iii) 3d Heisenberg antiferromagnet.c) Using the fact that close to the critical point, the order parameter is asmall quantity, the free energy can be written as a Taylor expansion of theorder parameter, leading to the given values of critical exponents which areindependent of the numerical values of the coupling constant u, v, w, etc. Theaction is assumed to be an analytic function of the order parameter, consistentwith the symmetries of the problem.
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ddxj(x)φ(x)In any mean �eld theory such an action de�nes the corresponding values ofthe critical exponents. The particular form of the action depends on the sym-metry and dimension of the problem. Power counting argument is importantwhen one has to decide which term to drop in the action. For example, termsof the form ´ wmφ
mddx are irrelevant at d(m) = 2m

m−2 and thus can be ignored.d) The critical exponents do not depend on the precise form of the crystallattice because all the information about the lattice is hidden in the couplingconstants of corresponding mean �eld equations. At the same time, the valuesof the critical exponents do not depend on the coupling constants, but dependonly on the form of the action. Thus, we may conclude that critical exponentsdepend on the symmetry of the order parameter, dimensionality, and the natureof the critical point; and are not e�ected by the values of coupling constants,type of the lattice or the form of the Hamiltonian.1



e) In 1d system with short-range interaction, there is no �nite temperaturephase transition because moving the domain walls costs us no energy. The en-tropy S ∼ Ln(L) (L is the system size) always wins. Thus, putting domainwalls will always lower the free energy no matter how low the temperature is.So, we can put the domain walls randomly positioned such that the orderedphase is destroyed at any �nite temperature.f) There can not be any �nite temperature phase transition for continuoussymmetry systems. It was shown that for a system with O(N) symmetry ind-dimension, the critical temperature is Tc ∼ (d− 2)/(N − 2). Thus, for N ≥ 3the critical temperature Tc = 0 for d = 2.g) 1d system can display a �nite temperature phase transition if the inter-action is long range. Since moving the domain wall costs us energy of order of
L compared to the entropy S ∼ Ln(L). Then the free energy will be minimumat limited domain walls number which results in the ordered phase at �nitetemperature.h) At �nite T near the critical point, the correlation length diverges. Thus,the behavior of the system is determined by the regions whose size is largerthan the length scale at which quantum e�ects are important. But even if onewrites the quantum case of the Landau theory, the action looks the same as inthe classical case but for d+ 1-dimension. The imaginary time plays the role ofthe extra dimension. At �nite temperature, however, there is a �nite imaginarytime cut-o�. Close to Tc, spacial �uctuations are much larger than this cut-o�,and we end up with the action which looks the same as the classical version ofthe problem.
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Problem 2Consider a lattice-gas model given by the Hamiltonian:
H = −V

N
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ni, (1)where ni = 0, 1 are the lattice site occupation numbers, and µ is a chemicalpotential.a) Let
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, (3)here z is a number of the nearest neighbors.This can be written as
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. (7)We may also conclude that

HLG = HI − E0 (8)and the grand partition function for the lattice-gas model can be wriiten as3



ZLG = eβE0ZI . (9)
ZI is the partition function of the Ising model.From eq.2 we can determine the relationship between the average density

< n > and magnetization m =< S >. Simply averaging both sides of thisequation we get
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(< S > +1)or

m = 2 < n > −1 (10)b) Taking into account that half-�lling < n >= 1/2 corresponds to m = 0(from eq.10) at zero external �eld, we obtain from eq.6
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2
. (11)This can also be obtained from the direct calculation of the average density,i.e.
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, (12)where the partition function of Ising model ZI in the mean-�eld approach is
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2 in the last expression, we obtain the corresponding valueof the chemical potential 4



µ = −V z
2

(15)c) In the mean-�eld approach, the Weiss self-consistency condition reads
m = tanh(βh+ βzJm) (16)Substituting the found above expressions for m, h and J into eq.16, we �nda corresponding condition for the lattice-gas model:

2 < n > −1 = tanh

(

βV z

4
+
βµ

2
+
βV z(2 < n > −1)

4

)or
2 < n > −1 = tanh

(

βµ

2
+
βV z < n >

2

) (17)To determine the critical temperature, we �x the chemical potential µ = −V
2 ,and obtain:
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) (18)This equation can be solved graphically:
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Figure 1: Graphical solution of �Weiss self-consistency condition� for the lattice-gas model at µ = −V z/2.For T < Tc there are two distinct solutions of eq.18, while for T > Tc thereis only one intersection at < n >= 0.5.At T = Tc the only intersection is still at <n>=0.5 but now both curveshave the same slope there. This allows us to determine Tc by calculating slopesof these two curves at < n >= 0.5, i.e. 5



2 =
zV

2Tcor
Tc =

V z

4
(19)We could have obtained this result with much less e�orts, just by using thefact that for the Ising model Tc = zJ , accordingly, for the lattice gas model

Tc = zV/4.Plotting < n > as function of µ (Fig.2-a), we can see that at half-�lling
µ = −V z

2 there is a jump in the density < n > for T < Tc , just like in the Isingmodel at h = 0. Such a discontinuity in the order parameter is the feature ofthe �rst order transition.The corresponding µ− T phase diagram is shown in Fig2-b. For a chemicalpotential µ < −V z/2 we obtain low density (negative magnetization) gas; andin the region where µ > −V z/2 we have a high density (positive magnetization)liquid.
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Figure 2: µ− T phase diagramd) To �nd< n > as function of µ and T , we expand self-consistency condition(eq.17) around critical point Tc. Let g = Tc

T .We �rst rewrite eq.17 in the form:
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Near the critical point 2 < n > −1 � 1 and V z
4 + µ

2 � 1 so we can expandeq.21 and obtain the equation of states in the form:
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(24)e) Pressure can be calculated from
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, (25)where F is a free energy of the lattice-gas model, V = V0N is the volume ofthe system, V0 is the volume of a unite cell, and N is the total number of thelattice sites.Taking into acount expression for ZLG (eq. 9) and ZI(eq. 13), we obtain
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(27)f) Below we present the phase diagram as function of the pressure p andaverage density < n > (Fig.3).To obtain this diagram, one can eliminate a chemical potential µ from eq.27 using self-consistensy condition (eq. 17) for di�erent values of < n >. Thenplot the pressure p as function of the density < n > at corresponding values of

µ at some constant temperature T .In Fig 3 we plotted p as function of < n > for temperatures above andbelow Tc. The dashed line indicates the values of p and < n > at half-�lling
µ = −V z/2 ( h = 0). For T < Tc and µ = −V z/2 there are two solutions ofeq.17 with the same pressure (free energy), while above Tc system has only onesolution. Thus, below Tc at µ = −V z/2 system exhibits phase separation, i.e.there is a coexistence of the liquid and the gas in the system.
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Figure 3: p-n phase diagram. V = 2, g = Tc/T.g) In this problem, using a linear transformation we have mapped the latticegas model into the magnetic Ising model.Consequently, the lower and upper critical dimensions should be the sameas in the Ising model case. Thus,
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Problem 33. a) We use the change variables
ε = (x+ x′)/2

ζ = (x− x′)

Jacobian
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∣

∣

∣
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∣
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∣
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dk1dk2dk3φ̃α(k1)φ̃α(k2)φ̃β(k3)φ̃(−k1 − k2 − k3) (32)So we have di�erent form of the action S of ordinary φ4- theory in small kexpansion when 0 < σ < 2 . In this case, we can ignore k2 term in the quadraticpart. If σ ≥ 2 , we have the same result as the ordinary φ4- theory (discussedin the lecturer notes)b) We are interesting in the range 0 < σ < 2. Using Hubbard-Stratonovichtransformation in real space we get:
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Integrating all states except α = 1 and rewriting the equation for the action(eq.33) with rescaling φ1′ ≡ φ1/
√
N : In the large N limit we can use saddlepoint method:
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8π
Nu

ˆ

dkψ2(k)

− (N − 1)Log

ˆ

Dφ̃αexp

{

1

4π

ˆ

dkφ̃α(k)(r + uψ + w|k|σ)φ̃α(k)
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2πw|k|σ (37)At the critical temperature φo = 0,

rc =
−u
w

ˆ Λ

0

dk

2π|k|σ (38)
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(39)Subsceptibility can be �nd by setting φo = 0 in the saddle -point condition and

r̄ = r + uψo, we can get the equation: 10



χ−1 = r̄ = r +

ˆ Λ

0

udk

2π(r̄ + w|k|σ)
r

r̄ ≈ r +
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w

= r +
u

2πw

{

Λ1−σ − (r̄/w)
1/σ−1

1 − σ

} (40)�nally, we can rewrite this equation as:
r + δr = r̄ +

ur̄1/σ−1

2πw1/σ−1(1 − σ)
(41)We can see that the linear term dominates when σ < 1/2 and γ = 1 (mean�eld theory) . If σ > 1/2 the second term dominates and we have γ = σ/(1−σ).c) The correlation length can be found by determining non local susceptibil-ity at r ≈ 0

χ(x) =
1

2π

ˆ

∞

0

dkeikx

kσ

=
1

π
Γ(1 − σ)sin

(πσ

2

) 1

x1−σ

χ(x) ∝ 1

x1−σ
(42)In our case d = 1 we also have the de�nition of anomalous dimension χ(x) ∝

x1−η, therefore η = 2 − σ.Use Kadano� relation to �nd other exponents:
γ = σν

if σ < 1/2 then ν = 1/σ,

ξ ∝ |r|1/σ−1 (43)
if σ > 1/2 then ν = 1/(1 − σ),

ξ ∝ |r|−1/σ . (44)We conclude that at σ > 1 our result for γ and ν becomes in�nite and there isno phase transition. At σ < 1, exponents γ, ν are �nite and phase transitionexist at �nite temperature. Special case at σ = 1, γ, ν are also logarithmicallydivergent or we can say at σ = 1 (marginal case), there is no phase transitionat �nite temperature.
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