
Renormalization of the Gaussian Model

The renormalization group analysis of the φ4 theory can be performed exactly

above the upper critical dimension duc, where the Gaussian version of the theory

is sufficient to describe the critical behavior.

Gaussian Model: the ”free” theory

We have seen how the Ising model partition function can be rewritten as a functional

integral

Z[h] =

∫
Dφ e−S[φ],

with an Action of the form

S[φ] =
1

2

∫
dxφ(x) [r−∇2]φ(x) +

u

4

∫
dx φ4(x)−

∫
dx j(x)φ(x).

As we mentioned, such a partition function is identical to the ”generating functional” Z[j] of

an Euclidian (imaginary time) φ4 field theory. The expectation value (i.e. thermal average)

of any physical quantity can be obtained by taking appropriate (functional) derivatives with

respect to the external fields j(x). For example, the order parameter can be written as

〈φ〉 =
δ

δ j(x)
lnZ[j].

Similarly, the correlation function

G(x− x′) = 〈φ(x)φ(x′)〉c = 〈φ(x)φ(x′)〉 − 〈φ(x)〉 〈φ(x′)〉 =
δ

δ j(x)δ j(x′)
lnZ[j].

[Here we have switched to the standard field-theoretic notation, where the external field is

denoted by j(x), and the correlation function by G(x− x′). The expression 〈...〉c indicates

a ”connected” correlation function, i.e. a cumulant as oppose to a moment.]

Interpreted as a field theory, this model describes a set of interacting relativistic bosons

with mass m = r1/2, and an interaction amplitude u. In general we do not know how to solve

such a field theory, but the situation is much simpler in the ”noninteracting” case u = 0,

which corresponds to the Gaussian model given by the quadratic part of the Action

So[φ] =
1

2

∫
dxφ(x) [r−∇2]φ(x)−

∫
dx j(x)φ(x).
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This corresponds to free propagating bosons, and the Z[j] is easy to explicitly compute since

it is simply a Gaussian integral. Up to an (irrelevant) numerical prefactor we find

Zo[j] = exp

{
1

2

∫
dxdx′j(x)Go(x− x′)j(x)

}
,

where Go(x− x′) is simply the ”bare” Green’s function

Go(k) = [r + k2]−1.

Note that within such a free theory, and correlation functions of higher order ”factor out”

in products of the bare Green’s functions, and we arrive at the World’s easiest derivation of

Wick’s theorem! For example, the vertex function

Γ4(x1,x2,x3,x4) = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉c =
δ4

δ j(x1)δ j(x2)δ j(x3)δ j(x4)
lnZ[j]

= Go(x1−x2)Go(x3−x4) +Go(x1−x3)Go(x2−x4) +Go(x1−x4)Go(x2−x3).

We will find these expressions useful later, when we discuss the effects of the ”interaction”

terms such as u
4

∫
dx φ4(x).

We are now in a position to immediately compute the physical quantities within such a

free theory. We have already calculate the long distance form of the free propagator

Go(R) ∼ exp{−R/ξ},

identifying the correlation length ξ = r1/2. This the correlation length exponent ν = 1/2,

just as in Landau theory! Similarly, the bulk susceptibility

χ = Go(k = 0) = r−1,

and the susceptibility exponent γ = 1, again as in Landau theory. is this a coincidence?

Not really! We have already seen that Landau theory emerges as a saddle-point solution of

the φ4 field theory. The correlations we examine within the Gaussian model correspond to

the small Gaussian fluctuations around this saddle-point solution (the expressions written

above correspond to the disordered phase where 〈φ〉 = 0. However, just as we did when we

examined the Landau theory, a similar analysis can be carried out also within the ordered

phase, by expanding around the nonzero value of 〈φ〉 = φo, and again retaining only the

terms quadratic in the fluctuating field to obtain another Gaussian model).
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Renormalization of the Gaussian model

To obtain a deeper understanding of the limitations of such a Gaussian approximation, we

now proceed to perform a RG analysis. To do this, we follow the philosophy of Kandanoff,

which suggests ”coarse-graining”, trying to eliminate the short-wavelength fluctuations of

the order parameter field. In the continuum model we now examine, this can be made

precise by separating the long and the short wavelength components of φ(x), as follows

φ(x) = φlong(x) + φshort(x),

where φl(x) corresponds to the long-wavelength components (wavevector 0 < k < Λ/b; here

the length rescaling factor b > 1, as before, while Λ ∼ a−1 is the ”ultraviolet cutoff set by

the lattice spacing)

φlong(x) =

∫ Λ/b

0

dk

(2π)d
φ(k).

The short-wavelength part is

φshort(x) =

∫ Λ

Λ/b

dk

(2π)d
φ(k).

Using such a decomposition, the Gaussian Action can be written as

So[φ] =
1

2

∫ Λ/b

0

dk

(2π)d
(k)φlong[r+k

2]φlong(k)+
1

2

∫ Λ

Λ/b

dk

(2π)d
φshort(k) [r+k2]φshort(k)−

∫
dx j(x)φ(x).

[Note that no cross-terms emerge, since the Action is diagonal in momentum space.] We

can now immediately integrate over ψ(x) to write

Z = Zshort Zlong,

where

Zshort = exp

{
1

2

∫ Λ

Λ/b

dk j(k)Go(k) j(k)

}
This part of the partition function is not very important for the critical behavior, since it

describes only fluctuations with short wavelength. Since only Go(0) diverges at a critical

point, Zshort only contributes to a smooth ”background” component of the free energy, which

is unimportant for the critical behavior, and which we therefore ignore from now on. We

concentrate on the properties of Zlong, which corresponds to the long-wavelength action of

the form

So[φ] =
1

2

∫ Λ/b

0

dk

(2π)d
φlong(k) [r+k2]φlong(k)− j

∫ Λ/b

0

dk

(2π)d
δd(k)φlong(k).
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Here, we have used the fact that we have a uniform external field, so j(k) = jδd(k). As

we can see, this Action has precisely the same form as the original one, except for the fact

that the ultraviolet cutoff now is Λ/b. How can we restore the action to the original form?

Easy! We simply rescale all the lengths as follows: k −→ k/b, dk −→ b−ddk in momentum

space, i.e. x −→ bx, dx −→ bddx in real space. In order for the coefficient of k2 to remain

parameter-free, we also need to introduce a ”wavefunction renormalization”

φlong(k) −→ b1+d/2φ(k),

in momentum space, or

φlong(x) −→ b1−d/2φ(x),

in real space. To renormalize the field term we follow a similar procedure, which is more

convenient to carry out in real space (to avoid dealing with δd(k)).

The action now assumes the form identical as before, except for the renormalized values

for the coupling constants

r(b) = b2r,

j(b) = b1+d/2j.

Following Kadanoff’s prescription, we immediately read-off

λr = 2; λj = 1 + d/2,

consistent, for example, with ν = λ−1
r = 1/2.


