
Broken symmetry and Goldstone modes

In presence of spontaneously broken continuous symmetry new types of exci-

tations appear, which cost very little energy at long wavelength. Such ”Goldstone

modes” are, in fact, nothing but sound modes propagating through the solid. They

lead to long-range correlations within the ordered phase, and give rise to large

fluctuation effects in low dimensions. As a result any finite temperature ordering

is suppressed in dimension d ≤ 2, for systems with continuous symmetry. We

establish this result first by examining the low energy fluctuations around the

ground state. Similar conclusions are then shown to emerge from the Landau-

Ginzburg formulation, which we solve exactly in the large-N limit.

So far we have concentrated much attention on the simplest example of critical phenomena

- the Ising model. Here, the order parameter displays discrete symmetry, as it can point only

in two directions (”up or down”). In this case, any excitations above the ground state cost a

finite energy, since a domain wall has to be created to reverse the spin in a given region. In

other words, we have a finite gap for elementary excitations, which for the ground state of

the Ising model is of the order Eg ∼ J (energy to flip a single spin). As a result, excitations

are created as an activated process, i.e. their density is of the order exp{− Eg/T}.
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In many ordered phases, however, there exists an order parameter characterized by con-

tinuous symmetry. A prototype is the Heisenberg (isotropic) ferromagnet, where the magne-

tization m = 〈σi〉 is a three component (N = 3) vector that can point in any direction. In the

ground state all the spins are aligned, and one may examine the cost of different low energy

excitations. The energy of any configuration is described by the Heisenberg Hamiltonian

H = −J
∑
ij

σi · σi = J
∑
ij

cos(θij).

Here, σi = (σx, σyσz) is a unit-length (|σi| = 1) vector that can point in any direction, and

θij = arccos(σi · σi) is their relative angle.

Let us assume that in the ground state all the spins point in the x-direction, so that

m = (1, 0, 0). How much energy do we have to pay to rotate some of the spins by an

infinitesimal angle θ? Well... to rotate only one of them will cost energy Eg ∼ J cos(θ).

Can’t we do better then that? In fact...we can? We can rotate ALL the spins by the same

infinitesimal angle θ, and this will cost us...NOTHING!!! This simple fact is a consequence

of the invariance of the Hamiltonian with respect to a global rotation of all the spins by an

arbitrary angle. We can immediately guess that a deformation that will cost us not zero,

but in fact very little energy is the one that is an almost uniform rotation, i.e. the one

corresponding to a long-wavelength spin wave.

Nonlinear σ-model

We can be more precise. Let us assume that the neighboring spins are almost aligned,

so that the local spin direction changes very slowly from site to site. In this case it makes

sense to introduce a continuous notation

H = −J
∑

ii

σi · σi = J
∑
ij

(σi − σi)
2 + const. ≈ 1

2
κ

∫
dx (∇σ(x))2 .

The parameter k ∼ a2−dJ is called the spin wave ”stiffness”. The energy cost of introducing

a long-wavelength deformation of the spin field with wavevector q is E(q) ∼ κq2. We can,

therefore view the Heisenberg magnet as a deformable elastic medium, where the deformation

we described are nothing but the transverse acoustic waves propagating through the spin

system. As we will see, these wave excitations dominate the behavior in low dimensions. To
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examine this regime, we can write the partition function in the form

Z[j] =

∫
Dσ(x) δ[σ2(x)− 1] exp

{
− 1

2g

∫
dx (∇σ(x))2 +

∫
dx j(x)σ(x)

}
,

where the coupling constant g = T/κ. This model has a fancy name, it’s often called the

”nonlinear σ-model”. Historically, this model was first discussed in the context of meson

theory in nuclear physics.

The situation we describe is, in fact, mush more general then the specific example we

considered. A similar situation in found in ordinary elastic solids, where we consider spatial

deformations of a crystalline lattice away from perfect periodicity. Again, moving all the

atoms by the same amount cost us no energy, so the low energy excitations correspond to the

long wavelength sound modes. Other examples include superfluids, superconductors...the

list is long. In every instance there exists a global symmetry operation that leaves the

energy of the system invariant. In each case, then, the low energy excitations assume a

form of long-wavelength ”hydrodynamic” modes. In field theory these are called ”Goldstone

bosons”, since Goldstone proved a theorem showing that such excitations generally emerge

as a consequence of broken global symmetry.
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Lindemann criterion

To get a first hint how significant are these spin wave excitations in low dimensions, we

present a heuristic argument that estimates the size of fluctuations around the ground state.

Let us consider a low temperature situation, where the fluctuations are small, and the spin

vector σ deviates little from its average value m, which we chose to lie in direction α = 1

(i.e. m =(1, 0, 0)). Note that, due to the constraint σ2= 1 all the components of σ are not

independent. Let us denote the components as follows σ= (σ, π1, π2), and eliminate σ from

the constraint

σ =

(
1−

∑
α=1,2

π2
α

)1/2

.

Now, if the fluctuations are small, then we can retain only the quadratic term

σ ≈ 1− 1

2

∑
α=1,2

π2
α,

and our σ-model action take the form (at j = 0)

S ≈ 1

2g

∫
dx (∇ π(x))2 =

1

2

∑
α=1,2

∫
dq

(2π)d

q2

g
π2

α(q).

Note that the fields πα(x) are not subject to any constraint. The Hamiltonian now looks like

that of n− 1 transverse sound modes. Since any wave is nothing but a collection of classical

harmonic oscillators, the partition function is nothing but a familiar Gaussian integral, and

we find 〈
(πα(x))2〉 ≈ g

∫
dq

(2π)d

1

q2
.

We take a moment to examine this important result. Let us consider a system in a box

of size L, so that the momenta acquire an infrared cutoff of order 2π/L. Then∫
dq

(2π)d

1

q2
=

Sd

(2π)d

∫ 2π/a

2π/L

dq qd−3 =
Sd

(2π)2

1

d− 2
[a2−d − L2−d].

The integral converges for d > 2, and can let L −→∞, to get

〈
(πα)2〉 ≈ T

κ

Sd

(2π)2

1

d− 2
a2−d.

We are now in a position to estimate the critical temperature. Lindemann developed a

criterion for melting of crystals using the following argument. He suggested that melting will
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occur around the temperature where the fluctuation size (of molecules in a solid) becomes

comparable to the interparticle distance. This heuristic criterion can be used for any elastic

solid, and proves to work remarkably well for many materials.

FIG. 1: The measured melting temperature versus the melting temperature estimated using the

Lindemann rule, from: G. Grimvall and S. Sjodin, Physica Scripta, 10, 340, (1974).

In our case, we should require that
〈

(πα)2〉 ∼ O(1), i.e. that the spin fluctuations

become comparable to the ordered moment. Using this criterion, we estimate

Tc/J ∼ (d− 2) .

Note that the critical temperature is predicted to decrease as dimensionality is reduced,

and to VANISH at d ≤ 2!!! We conclude that the spin-wave fluctuations destroy order at

and below the lower critical dimension which, for the models with continuous symmetry, is

dlc = 2. We can also see this by evaluating the integral directly in d = 2 giving〈
(πα)2〉 =

g

2π
ln(L/a).

The fluctuations logarithmically BLOW UP with the system size in d = 2! Out theory,

which was based on ASSUMING that fluctuations are small then proves incorrect, and the

ordered phase is destroyed. Note that the opposite is true in d > 2, since our result predicts

that the fluctuations can be made as small as we want, provided that the temperature T is

low enough. The ordered phase is stable in that case, and will be destroyed only at a finite

transition temperature Tc.
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Goldstone’s Theorem

We have presented simple arguments showing how infinitesimal excitations around the

ground state have a character of propagating sound modes in a spin system with continu-

ous symmetry. However, our argument was presented for a specific model, and furthermore

it remained unclear if this feature is relevant at finite temperatures (still within the or-

dered phase), where the fluctuations cannot be considered as small. In the following we

demonstrate what is known as the Goldstone’s Theorem, which shows how the emergence

of long-range correlations arises as a generic feature of broken continuous symmetry.

We concentrate on the form of the spin-spin correlation function

Gαα(x) = 〈φα(x)φα(0)〉 − 〈φα(x)〉 〈φα(0)〉 .

Technically, it can be evaluated by taking functional derivatives of the functional

F [j] = lnZ[j],

as

Gαα(x− y) =
δ2

δjα(x)δjα(y)
F [j].

[Note that for an isotropic system correlators Gαβ(x) with α 6= β vanish by symmetry].

Consider a system with continuous symmetry (N > 1), in the ordered phase, and imagine

applying a small external field ja(x). Since the system is assumed to be isotropic, the

partition function Z[j], which is a scalar quantity, must be independent of the direction

of the order parameter. It will, therefore remain unchanged if we perform an infinitesimal

rotation of the field direction by an angle δθ in the (β, γ) plane. Only the components jβ(x)

and jγ(x) are affected

j′β(x) = jβ(x)− δθjγ(x),

j′γ(x) = jγ(x) + δθjb(x).

The variation of F [j] leads to

0 =

∫
dx

[
δF

δjβ(x)
jγ(x)− δF

δjγ(x)
jβ(x)

]
.

Tanking another variation with respect to jγ(y) gives

0 =

∫
dx

[
δ2F

δjβ(x)δjγ(y)
jγ(x) +

δF

δjb(x)
δ(x− y)− δ2F

δjγ(x)δjγ(y)
jβ(x)

]
=

∫
dx [Gβγ(x− y)jγ(x) + φβ(x)δ(x− y)−Gγγ(x− y)jβ(x)] .
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Now let us assume that the initial field was a uniform field in the β-direction, i.e. jα(x) =

jδα,β, and φα = φδα,β. In this case jγ(x) = 0, and we conclude

φ =

∫
dxGγγ(x− y) j,

i.e. in momentum space

Gγγ(q = 0) =φ/j.

Since we are in the ordered phase, φ −→ const. when j −→ 0, and we conclude

Gγγ(q = 0) = ∞!

As Gγγ(q = 0) is an even function of q (by inversion symmetry), the most natural possibility

is

Gγγ(q = 0) ∼ 1/q2.

Note that the direction γ can be chosen to be any of the transversal directions to the ordering

vector direction β. The corresponding correlation function Gγγ(q = 0) = G⊥(q = 0) thus

described the transverse correlations, which we find to be long-ranged

G⊥(x) ∼ 1/ |x|d−2 .

This argument is completely general. It applies to ANY model with broken continuous

symmetry, classical or quantum, and is also valid at any temperature throughout the ordered

phase. The excitations associated to these transverse fluctuations are called Goldstone

modes, or in quantum systems Goldstone bosons.

Landau theory of the O(N) model

As an example, consider the Landau Action for the O(N) vector field φ = (φ1, . . . , φN)

S[φ] =
1

2

∫
dxφ(x) [r−∇2] φ(x) +

u

4

∫
dx (φ(x)φ(x))2 −

∫
dx j(x)φ(x)

=
1

2

N∑
α=1

∫
dxφα(x) [r−∇2]φα(x) +

u

4

N∑
α,β=1

∫
dx φ2

α(x)φ2
β(x)−

N∑
α=1

∫
dx ja(x)φα(x).

To find the broken-symmetry solution, we minimize this Action, looking for a uniform solu-

tion φ(x) = φo = const. The corresponding Landau potential

V (φo) =
1

Ω
S[φo] =

1

2
rφ2

o(x) +
u

4
(φ2

o)
2.
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Note that, for r < 0 (i.e. T < Tc), this potential is spherically symmetric, but it has the

form of the ”sombrero hat”.

The minimum of this potential, instead an isolated point in parameter space, now cor-

responds to an entire ”manifold” of minima, corresponding to the order parameter vector

pointing anywhere on the sphere

φo =

√
|r|
u
.

Physically, this corresponds to the fact that all the spins like to line-up, but in a spherically

symmetric model, they are free to choose any direction to do so. Assume that the order

parameter takes the form φo = (φo, 0, . . . , 0), i.e. that it points in direction α = 1.

Next, we examine the fluctuations around the symmetry broken state, by expanding the

action around this minimum, using the parametrization

φ = (φo + ψ1, ψ2, ..., ψN).

[The deviations ψα from the minimum are assumed to be small]. We find

δS[φ] = S[φ]− S[φo] =

∫ ∫
dx dy ψα(x)

N∑
α,β=1

δ2S[φ]

δψα(x)δψα(x)

∣∣∣∣∣
φ=φo

ψα(x) +O(ψ4)

=
1

2

∫
dxψ1(x) [r+3uφ2

o −∇2]ψ1(x) +
1

2

N∑
α=2

∫
dxψα(x) [r + uφ2

o −∇2]ψα(x) +O(ψ4).

Using the fact that φ2
o = −r/u, we conclude that all the ”transverse” fluctuations (α =

2, ...N) are ”massless, i.e.

δS[φ] =
1

2

∫
dxψ1(x) [2uφ2

o −∇2]ψ1(x) +
1

2

N∑
α=2

∫
dxψα(x) [−∇2]ψα(x) +O(ψ4).
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The corresponding correlators take the form

G11(q) = G‖(q) =
1

2 |r|+ q2
;

Gαα(q) = G⊥(q) =
1

q2
, α = 2, ...N.

Transverse fluctuations - large N approach

The results we have obtained within Landau theory confirms what we expect on general

grounds, based on Goldstone’s theorem. We found that the transverse fluctuations are

”gapless”, and give rise to long-range correlations in space. However, this result was obtained

on the mean-field level, where the effects of such fluctuations on the physical properties are

not addressed. The easiest way to see the effects of the transverse fluctuations is to examine

theO(N) theory is the largeN limit, where an extended version of mean-field theory becomes

exact.

Our starting point is the Landau Action

S[φ] =
1

2

∫
dxφ(x) [r−∇2] φ(x) +

u

4N

∫
dxφ4(x),

where we have rescaled the interaction amplitude u −→ u/N , in order to obtain finite result

in the N −→∞ limit. We decouple the φ4 term by introducing a collective field σ through

a Hubbard-Stratonovich transformation

1

4N
u

∫
dxφ4(x) −→ 1

2
u

∫
dxσ(x)φ2(x)− N

4
u

∫
dxσ2(x).

The Action now becomes quadratic in the φ-fields

S[φ,σ] =
1

2

N∑
α=1

∫
dxφα(x) [r + uσ(x)−∇2]φα(x)− N

4
u

∫
dx σ2(x).

In the large N limit, the partition function can be evaluated by the saddle-point method

(as one can see by explicitly integrating out the φ-fields; e.g see Herbut book). The appro-

priate saddle-point conditions (where σ −→ σo; φα −→ φoδα,1)

0 =
δS[φ,σ]

δφα(x)

∣∣∣∣
SP

; 0 =
δS[φ,σ]

δσ(x)

∣∣∣∣
SP

,
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give

0 = φo(r + uσo);

σo = φ2
o +

∫
dq

(2π)d

1

r + uσo + q2
.

Note that the first condition requires that in the ordered phase (φo 6= 0), the ”mass” of the

transverse propagator r + uσo = 0, i.e. σo = |r| /u. We can immediately eliminate σo to

calculate the order parameter

φo =

[
|r|
u
−
∫

dq

(2π)d

1

q2

]1/2

.

In this expression, the first term is the well-known mean-field expression for the order

parameter. The second term comes from the ”one-loop” corrections due to the Goldstone

modes (transverse fluctuations). Their effect is to reduce the order parameter. Note that

we do not find the fluctuation corrections due to the longitudinal mode, since these prove

to be of order 1/N , and thus drop out in the considered N −→∞ limit.

We can also calculate the shift of the critical temperature, as follows. At the critical

point we can put φo = 0, and from rc = −uσo we get

rc = −u
∫

dq

(2π)d

1

q2
.

The corresponding order-parameter exponent β = 1/2 in all dimensions.

Finally, one can also calculate the susceptibility χ = (r + uσo)
−1 at T > Tc, be setting

φo = 0 in the above equation, and self-consistently calculating σo. Note that this equation is

identical to the one we have derived earlier, when we considered (self-consistent) perturbation

theory in φ4, and can be solved in the same fashion. These integrals, as we have seen,

are finite for d > 2, but they blow up at d ≤ 2. We conclude that the singular effect

of the Goldstone in d ≤ 2 is already captured at the level of the self-consistent one-loop

(Hartree) approximation, which is exact in the considered large N limit. The resulting large

N exponent γ deviates from the Landau prediction γ = 1, for dimensions 2 < d < 4.

One more important observation is in order. Even if we consider these one-loop correc-

tions for finite N , where we have to keep the longitudinal mode, we should emphasize that

its effects are not very important. This is true since they remain ”massive” in the ordered

phase, in contrast to the Goldstone (transverse) modes. In particular, the integral∫
dq

(2π)d

1

2 |r|+ q2



11

is finite in any dimension, provided that |r| 6= 0. The longitudinal modes, therfore, do not

play an important role in low dimensions.


