
φ4 Theory

The first convincing calculation that demonstrated the validity of the

Kadanoff’s scaling ideas emerged when Wilson and Fisher developed a renor-

malization group (RG) approach based on expanding around the upper critical

dimension. In this regime, the exact ”fixed point ” Hamiltonian describing the

critical point assumes a particularly simple and tractable form. This allowed to

systematically examine the leading fluctuation corrections around Landau the-

ory, and to obtain an exact RG theory in d = 4 − ε dimensions. A simple

formal approach that provides a microscopic basis of this theory is provided by

the so-called Hubbard-Stratonovich transformation, which we now describe. It

provides a general prescription how to theoretically approach any phase transi-

tion involving spontaneous symmetry breaking, and is widely used for classical,

and quantum mechanical, clean or disordered systems.
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Hubbard-Stratonovich Transformation

We have seen how powerful Landau theory is in providing a general and rather universal

description of the critical point. But now we want to beyond it and systematically describe

the fluctuation corrections as well. As a simplest example, we again consider the partition

function of an Ising model

Z =
∑

{Si=±1}

exp

K
∑
〈ij〉

SiSj +
∑

i

hiSi

 ,
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the sum 〈ij〉 is carried over all pairs of nearest-neighbor sites, and we have introduced

an arbitrary (not necessarily uniform) external field hi (as before the temperature T is

absorbed in the definitions of the coupling constants K and hi). When we examined the

infinite range model we have seen how an elegant ”Gaussian” transformation can be used

to rewrite the partition function as an integral, which we then solved using a saddle-point

method. For the infinite-range model this was particularly simple, since the interaction term

in the Hamiltonian was proportional to the square of the magnetization M =
∑

i Si. When

the interactions are of short range and we live in finite dimensions the situation is more

complicated, but we can still use a generalization of the Gaussian transformation to obtain

an integral representation. To do this, we rewrite the interaction term in the following form

−βHint =
1

2

∑
ij

SiKijSj.

Note that the sum now runs over all sites i, j = 1, ..., N (N is the number of sites in the

lattice) but the matrix elements

Kij =

K, for i and j nearest neighbors,

0 otherwise
.

Generalizing the Gaussian trick (Problem 3.4), the interaction term can now be ”decou-

pled” using the Hubbard-Stratonovich transformation to write

exp

{
1

2

∑
ij

SiKijSj

}
=

∫ N∏
i=1

dφi exp

{
−1

2

∑
ij

φiKijφj +
∑
ij

SiKijφi

}
.

Inserting this expression in the partition function, we get

Z =

∫ N∏
i=1

dφi exp

{
−1

2

∑
ij

φiKijφj

} ∑
{Si=±1}

exp

{∑
i

(∑
j

Kijφj + hi

)
Si

}
.

Note that the spin-spin interactions are gone, but each spin now experiences a ”fluctuating”

field φi + hi. The spin sums can now easily be done, and we find

Z =

∫
Dφ exp{−S[φ]},

where we introduced the integration measure Dφ =
N∏

i=1

dφi, and the action (we drop the

constant ln 2)

S[φ] =
1

2

∑
ij

φiKijφj −
∑

i

ln cosh

(∑
j

Kijφj + hi

)
.
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We have succeeded in completely eliminating the spin variables, and rewriting the parti-

tion function in the form of a functional integral (in fact nothing but an integral over N

integration variables φi). So far no approximation has been made!

Saddle-point solution

Just as in the case of an infinite-range model, we can now attempt a saddle-point solution

of this integral, which is the simplest in presence of an uniform field hi = h, when the saddle-

point value of the field is also uniform φi = φo, and the action takes the form

S[φo] =
1

2
φ2

o

∑
ij

Kij −
∑

i

ln cosh

(∑
j

Kijφo + h

)

=
N K z

2
φ2

o −N ln cosh (K z φo + h) .

The saddle-point conditions ∂S/∂φo = 0 gives

φo = tanh (K z φo + h) ,

which is nothing but the familiar Weiss theory solution! Therefore, the saddle-point com-

putation of our functional integral recovers mean-field theory. Of course, for finite range

interactions this s only an approximate solution, while in the critical region long-wavelength

fluctuations around the saddle point must be included.

Landau Theory Recovered

Since we are interested in long-wavelength fluctuations, we examine the form of the action

assuming that φ(xi) = φi is a smooth function of the lattice coordinate xi. To obtain a long-

wavelength form, we go to momentum space, and we can write∑
ij

φiKijφj =

∫
dk

(2π)d
φ(k)K(k)φ(k).

Here we have used the fact that the field φ is real, so φ(−k) = φ(k). Furthermore, for

short-range interactions on a hypercubic lattice (coordination number z = 2d)

K(k) = K
d∑

α=1

cos(kαa)) ≈ 1

2
K [z − a2k2 + O(k4)].
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where a is the lattice spacing. Ignoring the momentum dependence coming from the non-

linear term lg cosh(...) term, the action takes precisely the Landau-Ginzburg form

S[φ] =
1

2

∫
dxφ(x) [r−∇2] φ(x) +

u

4

∫
dx φ4(x)−

∫
dxh(x)φ(x).

As before, Kc = z−1 is the critical coupling at the saddle-point (mean-field) level, we defined

r = (1 − Kz) ≈ (Kc − K)/Kc ∼ (T − Tc); u = 1
3
(Kz)3 ≈ 1

3
(Kcz)3 = 1

3
. We have also

chosen to measure the length in units such that a = z−1/2, have concentrated on the regime

K ≈ Kc, and have thus replaced K −→ Kc in the expression for u.

We have dropped many terms: all those of order φ6, k2φ4 and many more. We will

see shortly that such terms, even if originally kept in the theory, prove to be irrelevant

operators, i.e. they can be safely ignored in examining the critical behavior. This theory

is identical to what the field theorists call the ”Euclidean φ4 field theory”, which we shall

examine in detail in he following.

The approach we have described is completely general. We can use it whenever the

interactions assume a pairwise form, which is almost always the case. Such interaction

terms can again be decoupled using the Hubbard-Stratonovich method, and an appropriate

Landau action can be derived which, at the saddle-point level, can describe any kind of

symmetry breaking. For example, if we have Heisenberg (vector) rather then Ising (up-

down, anisotropic) spins, i.e. S = (S1, S2, S3), the action takes the form

S[φ] =
1

2

3∑
α=1

∫
dxφα(x) [r−∇2] φα(x) +

u

4

∫
dx

(
3∑

α=1

φ2
α(x)

)2

−
3∑

α=1

∫
dxha(x)φα(x).

As we can see in this example, the Landau action has all the terms allowed by symmetry

(in this case rotational invariance). In fact, we could have guessed the form of the Landau

action based on symmetry arguments, as Landau has originally done.

The application of the Hubbard-Stratonovich method in the quantum case can also be

used to describe spontaneous symmetry breaking in itinerant systems, such as the formation

of spin and charge density waves. At the saddle point, one recovers the result of the stan-

dard Hartree-Fock approximation, but the fluctuations around the saddle point generate

corrections. For example, Gaussian fluctuations around the saddle point effectively sum-up

all the ”ring” diagrams to arrive at the RPA approximation for the electron gas. Another

interesting example is found in deriving the BCS mean-field theory for superconductors.
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The saddle-point solution of the corresponding action then produces the (original!) Landau-

Ginzburg equations describing inhomogeneous superconductors, vortex lattices, etc. Since

these applications are the main subject of the ”Quantum Many Body Physics - PHY5690”

course, we will not elaborate further. Instead, we will concentrate on the physics of the

critical region, where the corrections to the saddle point approximation are not small, and

the RG methods must be used in a proper theory.


