
Introduction and Overview of Phase Transitions

In this lecture we try to motivate the study of phase transitions and identify

the most important questions we address in this course.

What’s there to be done - and how?

Most objects in the World - big and small - consist of many elementary particles or degrees

of freedom. The fundamental physics laws describing these are known: we have to solve a

Newton’s or Schrödinger equation for 1023 atoms. Given today’s ultra fast computers, what

could be easier? Is there anything "fundamental" to learn about large bodies such as an ice

cube in your Coke, or a gas bubble in your Pilsner beer? From the "atomistic" point of

view the answer seems - NOT!

Problems with "brute force" approach

• It takes too much time, and the results are too complicated (no hard disk can store

positions of 1023 atoms)!

• Have to calculate over and over again for every material, chemical composition, lattice

structure. So boring and hard!

SEARCH FOR SIMPLICITY

But is the task of understanding macroscopic bodies in a simple way indeed so hopeless?

Surely NOT! We know from everyday experience that general, rough features of most mi-

croscopic objects are quite similar. There seem to be only a few basic states of matter -

phases, that are qualitatively different.

Some phases that we will discuss include: solids, liquids, gases, plasmas, ferromagnets,

antiferromagnets, superconductors, superfluids,...the list is long. The material properties of

matter in each phase is different, since the atoms (or other particles and degrees of freedom

involved) are ordered in a different fashion.
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As we vary parameters such as the temperature, pressure, external magnetic or electric

fields the system can experience sudden change from one phase to another - a phase tran-

sition. In this course our goal will be to understand what gives rise to phase transitions,

and describe the behavior in their vicinity.

PREDICTIVE POWER OF THEORY

Laziness and doing stupid things can have a great virtue

Lao-Tseu, Ancient Chinese Philosopher , 570-490 B.C.

If one looks at a material in great detail with many experimental probes, one always finds

differences. For example, the detailed temperature dependence of response functions such

as the specific heat or the magnetic susceptibility will depend on many material details, if

one considers a broad parameter range. Since our knowledge of many details, as well as our

computational ability are limited, it is generally a hopeless task to attempt a theoretical

understanding of every little feature. Estimates can be made, but the predictive power of

theory in such cases is limited.

The situation is more under control if one asks simpler questions, such as the qualitative

forms of physics laws. For example, if one is interested in quantifying the ordering of local

degrees of freedom, one tries to measure (experiments) or calculate (theory) some correlation

function. For example, in a magnetic system we consider a spin-spin correlator

χ(r− r′) = 〈S(r)S(r′)〉 ,

where the brackets 〈...〉 indicate thermal (or time) averages over all different configurations

of the local magnetic moments (spins) S(r) at site r. In a high temperature (paramagnetic,

i.e. thermally disordered) state, the correlations decay rapidly with distance R = r− r′

χ(R,T>Tc) ∼ exp{−R/ξ}.

The correlation length ξ grows in a powerlaw fashion as the phase transition is approached

ξ(T ) ∼ (T − Tc)−ν .

In this expression, the critical exponent ν describes the divergence of ξ near the critical

temperature Tc. Another example is the "anomalous dimension" η describing the spatial
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correlations at criticality (ξ =∞)

χ(R,T=Tc) ∼ R−(d−2+η).

Some quantities, like the value of Tc typically depend on the microscopic details of each

experimental system, and as such are difficult to calculate with accuracy.

Remarkably, other quantities, such as the critical exponents ν and η are identical

for many different materials (so-called "universality classes"). Such quantities, which

describe the approach to the critical point display universality, and prove to depend only

on the symmetry properties of the problem and the spatial dimensionality of the material.

Such quantities can be accurately calculated by simple theory, since they do not depend on

knowing many material properties and details.

CRITICAL SYSTEMS LIVE IN A FRACTAL WORLD

What are the values of the critical exponents? Simple theories based on dimensional

analysis typically predict simple rational values for the exponents. For example, the Landau

mean-field theory predicts ν = 1/2 and η = 0. Careful experiments, however, reveal strange

irrational values for these exponents; e.g. for a d = 3 anisotropic (Ising) ferromagnet,

ν = 0.63 and η = 0.05.

What does this mean? To get a glimpse at the complexity of the problem we face, and

get a hint OF what may be going on, we take a look at some "snapshots" of spins in a

ferromagnet, above, at, and below the phase transition.

This picture shows results of a simulation for an Ising ferromagnet, where spins can point

"up" (shown as black) or "down" (while). In the ferromagnetic state (T < Tc; left panel)

most spins are "up" (black), while in the paramagnetic phase (T > Tc, right panel), the
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spins are randomly oriented (gray). Here, only small clusters of aligned spins exist on scales

shorter then the correlation length ξ � L (L is the systems size). Precisely at the critical

point (T = Tc, center panel), an infinite cluster of "up" spins emerges ("percolates"); the

system is at the brink of ordering.

Note that the ordered cluster has a funny "fractal" shape, with shape fluctuations on all

length scales. This fractal geometry of the ordered cluster is directly reflected in strange,

irrational values of the critical exponents. Clearly, simplistic theories cannot come to grips

with the description of such fractal objects or their properties. Physically, the emergence

of such shape fluctuations on all scales reflect the extreme lack of stability in the system at

the critical point. Can we ever hope to understand this complex behavior?

CLASSICAL OR QUANTUM MECHANICS?

When we entered kindergarten, our teachers demanded that we chant: "Laws of quantum

mechanics determine the fundamental behavior of all elementary particles that make up

matter". And to this day no one has proved them wrong!

At the same time, most ordered phases can be destroyed as we raise the temperature,

hence the phase transitions are often driven by thermal fluctuations. In such cases, the

critical behavior can be described using purely classical models! This is great, since classical

theories are much simpler than quantum mechanical ones.

In other cases, the phase transitions can be driven even at strictly zero temperature, by

experimentally tuning the "quantum fluctuations". For these "quantum phase transi-

tions" the classical models are of little use, but the full theory yet remains to be completed.
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THEORETICAL FRAMEWORK

In this course we will limit our attention to equilibrium statistical mechanics and phase

transitions. This is sufficient in many systems, since the relaxation time (time to return to

equilibrium) is very short, i.e. most systems are in equilibrium (or quasi-equilibrium). Our

task will be simple: calculate the partition function of the system

Z(T,H, ...) =
∑
n

e−En/T .

From this, we can calculate the free energy

F = −kBT lnZ,

as a function of temperature and other control parameters (pressure, external fields); from

this we can calculate all thermodynamic quantities.

But how do we obtain a phase transition from this? After all, a phase transition is a

sudden change of behavior of the system at the critical temperature. On the other hand,

Z is just a sum of exponentials (Boltzmann factors e−En/T ), which are smooth, analytic

functions of temperature, external fields...We will show that not all systems can undergo

sharp phase transitions, only "large", (macroscopic) systems, i.e. in the thermodynamic

limit.

MANY QUESTIONS TO ADDRESS...

When I arrived at FSU as a young assistant professor, I walked into the office of a very

distinguished senior colleague (can you guess who?) and politely said: "Excuse me, can I

ask you a physics question? Here is the answer I got:

"Many have tried,... but few have obtained answers!"

In this course I plan to do precisely the opposite: to answer all possible questions that

students (or walkers by from the street) may want to answer.

Some important questions that we will address in technical detail, even if everyone in

class is silent (I promise to tell jokes so you stay awake) include the following.

• How do we experimentally identify a critical point using scaling ideas and approaches

(even if the theory is not available!).
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• What quantities are universal and which ones are not? What is the origin of univer-

sality of critical phenomena?

• How are the phase transitions modified in finite systems (e.g. nuclei, nano-scale sam-

ples...)?

• How do we calculate (predict) the critical behavior? Can we understand the fractal

geometry of critical objects?

• How does the critical behavior depend on the internal symmetries and dimensionality

of space?

• Why is quantum mechanics unimportant in most finite temperature phase transitions,

but not at T = 0?

We will start from simplest theoretical approaches using Landau mean-field theories and

phenomenological scaling to gradually more sophisticated theoretical tools borrowing math-

ematical tricks from quantum field theory. We will develop a renormalization-group (RG)

language that at present permeates the scientific jargon, and without which it becomes hard

to follow and understand the results at the cutting edge of discovery.

Since this course is not intended only for theorists, but should be of interest and be

accessible to a general physicist, the class presentation will not emphasize technical details,

but will instead focus on physical pictures and qualitative interpretation. In order to save

time in class from lengthy and boring derivations, many technical steps will be assigned as

homework problems or will be left for extra-credit work.

Traditionally, courses on critical phenomena are geared towards condensed matter stu-

dents. However, in recent years, active study of phase transitions has emerged in many

other research areas ranging from nuclear to high energy physics. Recognizing that many of

these topics represent fairly advanced material, effort will nevertheless be made to at least

introduce the physical framework where phase transition ideas play a key role.
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SYNOPSIS

In this class, we hope to cover a number of topics which will include (time permitting)

the following

• Experimental systems showing classical and quantum critical phenomena.

• Thermodynamic potentials. Heat capacity. Magnetic susceptibility.

• Phases. Phenomenology of 1st order phase transitions. Continuous transitions.

• Landau theory. Order parameters. Spontaneous symmetry breaking.

• Critical behavior. Scaling. Critical exponents. Relations between critical exponents.

• Kadanoff scaling. Universality conjecture.

• Calculation of critical exponents: Real space RG methods.

• RG of Wilson and Fisher, φ4 theory, 4-ε expansion.

• Continuous symmetry: Mermin-Wagner theorem.

• Non-linear sigma-model; 2 + ε expansion.

• Scaling theory of localization. Asymptotic freedom in QCD.

• Topological order. Kosterlitz-Thouless phase transition. Dissipative quantum tunnel-

ing.

• Quantum critical phenomena.


