
Power Counting, Relevant and Irrelevant Operators

This ”power counting” analysis, arising from the renormalization of the Gaussian model,

also makes it possible to demonstrate how many possible terms in the effective Hamiltonian

(”irrelevant operators”) are generically removed by renormalization, explaining the emer-

gence of universality at the critical point. In dimension d > duc one has to be a bit more

careful, due to the emergence of ”dangerously irrelevant operators”.

obsolete operatorsobsolete operators

Power counting and stability of the Gaussian model

We continue to examine the theory at the Gaussian level, and examine what happens

under rescaling to nonlinear operator

S4 =
u

4

∫
dx φ4(x).

Using the same rescaling prescription as before, we conclude

u(b) = b4−du

We pause here to fully appreciate the significance of this important result. As we can clearly

see from this expression, the ”interaction amplitude” u decreases under renormalization for

d > duc = 4.

We conclude that the S4 (quartic) term is irrelevant above the upper critical dimension, and

thus the Gaussian theory represents the exact fixed point Action in this case. In contrast,

the ”interaction” S4 grows for d < duc, thus it becomes a relevant operator, which cannot

be disregarded in the theory.
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Irrelevant operators

And what happens to higher order terms, such as those we have dropped in deriving

the φ4 theory? For example consider containing the fourth derivative of the form k4φ2?

After rescaling, such a term is multiplied by b−2. As we can see, such a term can be safely

neglected in all dimensions. The same conclusion is true for higher momentum terms of the

form k2nφ2, which scale as b−2(n−1), and are therefore even more irrelevant.

Finally, we examine arbitrary powers of the order parameter, of the form

Sm = wm

∫
dx φm(x).

Repeating the same analysis, we find

wm(b) = bλw(m)w,

where

λw(m) = m− (m− 2)d/2.

Such terms are irrelevant above

duc(m) =
2m

m− 2
.

As we can see, duc(m) actually decreases as m grows, and for m > 4, duc(m) < 4. We

conclude that the terms with m > 4 are in fact less relevant that the leading m = 4 term,

and thus do not modify the upper critical dimension, which remains duc = 4.

Upper critical dimension

The only exception occurs in presence of a φ3(cubic) term (m = 3). In this special case

we get duc = 6. In magnets such a term is generally absent due to the up-down symmetry
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of the order parameter. However, in other critical phenomena, such a term may be present,

leading to a higher upper critical dimension. Important examples include percolation and

spin glass behavior, in both of which duc = 6, precisely for the same reason. Unfortunately,

in such cases, the expansion in ε = duc− d, which is very useful for magnets, proves of little

help in physical dimensions d = 2, 3, and one is then typically forced to use less controlled

real-space RG methods.

But can we get, for example, duc = 5? For thermal critical phenomena we examine here,

the answer is NO! This is because, according to the above power-counting argument, this

would correspond to m = 7/2. This kind of term is generally not allowed for a (bare)

Landau functional, since one expect it to be an analytic function of the order parameter. In

some cases, such nonanalytic terms can be generated by renormalization, but in the known

examples (e.g. Halperin-Lubensky-Ma theory for fluctuation effects in superconductors,

gauge-field mediated pairing of composite fermions in quantum Hall systems) this typically

leads to a first-order transition, not a critical point with a modified upper critical dimension.

Dangerously irrelevant operators in d > duc

What we said so far may be just a tiny bit misleading. At first glance one may conclude

that for d > duc one may simply drop all non-Gaussian terms, since they scale to zero under

renormalization. In specific situations, though, one may need to be a bit more careful, due

to the possible presence of so-called dangerously irrelevant operators, which we discuss in

the following.

Consider a Gaussian theory at d > duc. We have already shown that in that case the

Kadanoff eigenvalues take the values λr = 2, λj = 1+d/2. According to Kadanoff, we should

be able to use those and calculate all six critical exponents. For example, ν = λ−1
r = 1/2, in

agreement with Landau theory. Similarly, η = 0 within Gaussian theory, so γ = (2−η)ν = 1,

again in accordance with Landau.

The situation is more complicated if we explore the exponents β and δ. Using the expo-

nents relations and Kadanoff theory, in general

β =
d− λj
λr

; δ =
2λj − d
d− λj

.
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Using the values for λt and λh obtained for the Gaussian model, we find

β =
d− 2

4
; δ =

d+ 2

d− 2
.

These values agree with the predictions of Landau theory only for d = duc = 4, but deviate

from mean-field results for d > 4, where we expect Landau theory to be exact. Something

is wrong! But what ?

To understand the source of problems, we go back to the analysis of the scaling formu-

lation, as adapted to the problem at hand. As we have seen, the effective Hamiltonian (i.e.

Action) describing our model can be characterized by several parameters: r, j, u, w.... (here

w describes some higher order irrelevant operators...). Under rescaling, the Action preserves

the same form, but these coupling constants are renormalized. The free energy per unit

volume then satisfies a scaling expression of a general form

f(r, u, j, w...) = b−df(bλrr, bλjj, bλuu, bλww, ...).

We have thus related the free energy of our system at reduced temperature r, field j, and

coupling constants u, w..., to the free energy of the same physical system, but at reduced
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temperature r(b) = bλrr, field j(b) = bλjj, and coupling constants u(b) = bλuu, w(b) =

bλww.... A similar expression is valid for the scaling of the order parameter

φ(r, u, j, w...) = b−d+λjφ(bλrr, bλjj, bλuu, bλww, ...).

For d > duc we expect the only relevant operators to be r and j (i.e. λr > 0; λj > 0),

while all others should be irrelevant, (i.e. λu < 0; λw < 0,...). Therefore, when b � 1, r(b)

and j(b) should grow with b, while u(b) −→ 0, w(b) −→ 0,..., decrease. At sufficiently large

b such that r(b) = bλrr ∼ 1 (i.e. b ∼ t−1/λr) we can write

φ(r, u, j, w...) = r(d−λj)/λrf(1, j/rλhν , ur−λu/λr , wr−λw/λr , ...).

For r −→ 0, the parameters xu = ur−λuν −→ 0; wr−λwν −→ 0, and we are tempted to

conclude

φ(r, u, j = 0, w...) ≈ r(d−λj)/λrφ(1, 0, 0, 0, ...) ∼ r(d−λj)/λr ,

with β = (d− λj) /λr, as Kadanoff argued. We have, however, seen that this produces

incorrect results for d > duc! Here is what’s wrong in applying the naive Kadanoff scaling

above the upper critical dimension. After rescaling (b � 1), the reduced temperature is

large, the correlation length is small, and then Landau theory should be perfectly justified

to use in any dimension. Thus, we can calculate the zero-field order parameter directly from

Landau theory and we find

φ(r(b), j(b), u(b),W (b)...) ≈

√
|r(b)|
u(b)

∼ u(b)−1/2

Note that the result indeed does not depend on higher-order coupling constant w, ..., but

it is a singular (diverging) function of u(b)!!! So, instead of assuming that φ(1, 0, 0, 0, ...) is

simply a constant, we need to evaluate it in the limit where r(b) = bλrr ∼ 1, and u(b) −→ 0.

We get

φ(1, 0, u(b) −→ 0, 0, ...) ∼ u(b)−1/2 ∼ rλu/2λr .

We conclude that, because u is a dangerously irrelevant operator,

φ(r, u, j = 0, w...) ∼ r(d−λj)/λr+λu/2λr,

and the exponent

β = (d− λj + λu/2) /λr.
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Finally, by using λr = 2, λj = 1 + d/2, and λu = 4− d, we find

β = (d− 1− d/2 + 2− d/2)/2 = 1/2.

As we can see, by properly treating the singularity introducing by the dangerously irrele-

vant operator, we have recovered the correct Landau result for the order parameter exponent

β in the regime above the upper critical dimension. A similar argument (Problem 4.1)

shows that a proper treatment also recovers the Landau prediction δ = 3, for all d > duc.

Of course, for d < duc, the coupling constant u becomes a relevant operator, and grows

under rescaling, so the above mechanism does not apply, since it produces a singularity only

for u(b) −→ 0. As we will see shortly, for d < duc the renormalized interaction amplitude

u(b) −→ u∗, and the standard Kadanoff scaling is restored. We conclude that the described

mechanism applies only for d > duc, where is provides a rigorous justification for the validity

of the Landau theory predictions.

Finally, we briefly discuss the hyperscaling relation

2− α = dν.

According to Landau, α = 0, but if we use the above result for ν = 1/2, then the hyperscaling

relation would predict

α = 2− d/2.

Thus, hyperscaling is violated for d > duc! One may often hear people saying the ”hyper-

scaling is violated because of dangerously irrelevant operators”. Such a statement is, in

fact, incorrect, and the violation of hyperscaling has a different origin. Note that the above

mechanism, related to the dangerously irrelevant operator u is applicable only in a regime

where the order parameter is finite, so the φ4 term (proportional to u) in the Landau action
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must be considered. This is true if we examine the low temperature phase at zero field

(r < 0, j = 0), or the critical region for finite fields (r = 0, j 6= 0), which is described by

the critical exponents β and δ, respectively. In contrast, the specific heat exponent α is well

defined even at high temperatures and zero fields (r > 0, j = 0), where the φ4 term can

be disregarded within Landau theory. Thus, the behavior described by u(b) −→ 0 seems of

little relevance here. But what’s going on?

What happens is that, for d > duc = 4, hyperscaling would suggest α = 2 − d/2 < 0.

Therefore, what was a singular (diverging) contribution for d < duc = 4, now is not divergent

any more, and is a subleading contribution to that given by Landau theory, which predicts

a specific heat jump (α = 0). Since the proper definition of the exponent α should describe

the most singular term, we must conclude that α = 0 remains correct in all d > duc, and

Landau theory is again proven correct.


