
Tunneling and Instantons

Remarkably, the same mathematical equations describe both the 1D Ising

model, and quantum mechanical tunneling in a double-well potential. Here, the

domain wall solution describe the barrier penetration event, sometimes called

the ”instanton”. This is our first example illustrating how certain quantum me-

chanical problems can be rigorously mapped onto models of classical statistical

mechanics, allowing direct solutions using standard theoretical tools.

Quantum statistical mechanics of a tunneling two-state system

Now consider a (single) quantum-mechanical particle moving in a double well potential

of the form

V (x) =
1

2
rx2 +

1

4
ux4,

with r < 0. Classically, a low energy particle will be confined to one of the two wells, with

a doubly degenrate ground state at x = ±xo = ±(|r| /u)1/2. Quantum mechanically, there

is a finite (even if small) probability for tunneling through the barrier. The corresponding

tunneling rate will depend on the form and the size of the barrier, and it will determine the

”tunnel splitting” ∆ between the ”bonding” (ground) and the ”antibonding” (first excited)

quantum energy state.

While the tranditional calculation of the barrier penetration rate has been first performed

by the so-called WKB (semiclassical) approximation, an equivalent result can also be ob-

tained by examining the quantum statistical mechanics of the same problem, which is easiest

to do in the so-called imaginary time (Matsubara) formulation.
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Matsubara formalism for a single particle

The partition function for the system can be written as

Z = Tr[e−βH] =
∑

n

e−βEn ,

where H is the Hamiltonian of this system with eigenvalues E0, E1, ..., and the density matrix

(statistical operator)

ρ =
1

Z
e−βH.

The (modified) Heisenberg representation for the position operator x is defined by

x(τ) = eτH/~xe−τH/~.

The imaginary time auto-correlation function can be written using a time-ordered product

operator Tτ as

χ(τ) = Tr[ρTτ{x(τ)x(0)}].

Finally, it is easy to see (homework problem HW#6.2) that at low temperature (β −→∞),

this reduces to

χ(τ) ∼ e−τ∆/~.

Thus, the imaginary time decay rate of χ(τ) measures the tunnel splitting ∆ between the

ground state and the first excited state.

Path integral represenation

A convenient representation for evaluating the partition function of the system is provided

by the Feynmann path-integral representation in imaginary time

Z =

∫
Dx(τ)e−S[x],

where the action is [we measure the time in units such that the particle mass m = 1]

S[x(t)] =

∫ β~

0

dt

[
1

2

(
dx

dτ

)2

+ V (x)

]
.

Furthermore, the imaginary-time auto correlation function χ(τ) can also be evaluated usign

this path integral represenatation as

χ(τ) =
1

Z

∫
Dx(τ)x(τ)x(0)e−S[x]
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As we can see, this action looks exactly identical to the Landau-Ginzburg action for the

φ4 theory (continuum limit of the Ising model)! The problem, therfore, is formally reduced

to an equivalent classical statistical mechanical problem. Here, the (imaginary) time of the

quantum particle corresponds to the saptial coordinate of the classical problem. Solving the

tunneling problem is, thefore, equivalent to solvinf the d = 1 classical Ising model!

Instanton solution

In evaluating this path integral, one has to sum over all possible paths in imaginary time,

which contribute to the partition function according to their respective Boltzmann weights

determined by the action S[x(t)]. For ”thick” enough barriers, the leading contributions

can be obtained by a semi-classical approximation, which corresponds to trajectories with

minimal action. These are calculated from the saddle-point condition

δS

δx(t)
= 0,

giving

−d2x

dτ 2
+ rx + ux3 = 0.

This equation is identical to our Landau-Ginzburg equation we used for the domain wall

calculation. It again describes the classical trajectory of a particle moving in the inverted

potential −V (x)! Here, the domain wall corresponds to a trajectory describing the tunnel-

ing of a particle from one to the other potential well. It essentially takes place in a rather

short time interval

τ ∗ = |r|−1/2 ,

so that

x(τ) = x0 tanh [(τ − τo)/τ
∗] ,

and is thus called the ”instanton” solution. Note that, just as any domain wall, it can

be ”centered” about an arbitrary time τo. It is called ”instanton”, since tits ”thickness” in

time τ ∗ becomes very small for thick barriers (|r| large), so in a way tunneling is (almost)

instantenious.
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Dilute instanton gas

To compute the partition function, we need to sum over all possible tunneling events,

just as we summed over all the possible configurations of the domain walls in the 1D Ising

model. The rest of the calculation is done in complete analogy as before, and we find that

the ”correlation time” takes the form

τξ ∼ exp{So},

where the ”barrier height” is given by

So ∼
|r|3/2

u
.

Physically, this correlation time corresponds to the average time between consecutive tun-

neling events across the barrier. For ”thick barriers”, where So is large, the the correlation

time τξ � τ ∗, so a particle typically spends a long time in each well, before almost instan-

taneously tunneling to the other well. In this regime, the instantons can be considered as a

noninteracting ”gas”, as we have assumed in the above calculation of the correlation time.

Following the procdure we developed for the classical domain wall gas, we can now calculate

also the autocorrelation function (see homework problem HW#6.1), and find

χ(τ) ∼ e−τ/τξ .

By comparing with the result from the Matsubara calculation (homework problem HW#6.2),

we find that the tunnel splitting between the ”bonding” and ”antibonding” levels in the

double well problem

∆ =
~
τξ

∼ exp{−So}.

We conclude that it is exponentially large in terms of the barrier height, in agreement with

the WKB formula.

The formal analogy of the two problems is our first encounter of the formal mapping

of quantum mechanical (QM) problems in d dimensions to equivalent problems in classical

statistical mechanics in d + 1 dimensions (d spatial and one time). In this case, the QM

problem was a local tunneling center, thus a ”zero-dimensional” problem (e.g. has only one

degree of freedom). It was mapped onto the one dimensional Ising model, and this analogy

provides a deeper understanding of the WKB behavior on one side, and the thermodynamic

behavior at the lower critical dimension on the other side.


