
Critical behavior at the Kosterlitz-Thouless transition

Having derived the RG equations using the mapping to the Sine-Gordon

model, we now analyze the RG equations describing the Kosterlitz-Thouless phase

transition. We also discuss how essentially the same critical behavior emerges in

a number of other physical problems, ranging from the two-dimensional melting,

to dissipative two-level systems, and the infamous Kondo problem.

Critical behavior at the Kosterlitz-Thouless transition

The RG equations that we have obtained for the Sine-Gordon model can be reinterpreted

n terms of the original CG coupling constants g = 4π2/g̃ and yo = a2λ/2, and the result

proves identical to the famous Kosterlitz RG equations

dyo

d`
= (2− π

g
)yo;

dg

d`
= 4π3a4y2

o .

To simplify the notation, it is convenient to introduce new variables introduce new variables

y = π2a2yo ∼ exp{−βEo}, x = g − π/2 ∼ (T − TKT ), and get

dx

d`
=

4

π
y2 + O(y3);

dy

d`
=

4

π
xy + O(y2).

We immediately notice several important features of these equations, as follows.

1. The vortex fugacity (concentration) y grows under renormalization for x > 0, i.e.

T > TKT . This means vortices unbind

2. The fugacity y decreases under renormalization for x < 0, i.e. T < TKT . This no free

vortices, and the core energy Eo = −T ln yo −→ +∞.

3. The line y = 0 on the phase diagram is a fixed line, since there dx/d` = 0 (i.e. the

spin stiffness does not flow).

As we can see the transition is characterized by vanishing (renormalized) fugacity y∗ = 0.

This is why our derivation of the RG equations, which was done perturbatively in y is valid.

In fact, and in contrast to the various ε-expansions we have seen before, the presented RG

description of the Kosterlitz-Thouless transition is EXACT.
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FIG. 1: RG flow diagram for the Kosterlitz-Thouless phase transition, in terms of the reduced

temperature x ∼ (T −TKT ), and the fugacity y ∼ exp{−βEo}. Note the line of stable fixed points,

corresponding to the quasi long-range order (QLRO) state (no free vortices). The “separatix”

(blue) represents the critical line separating the two phases.

Next, we determine the structure of the flows in more detail. We first observe that

dx2

d`
=

8

π
xy2 =

dy2

d`
.

In other words
d

d`
(x2 − y2) = 0,

i.e.

x2 − y2 = t,

where t is a constant. Thus we have a family of hyperbolae, parametrized by the constant

t. For t = 0 we get the straight lines

y = ±x.

Note that the line y = −x, for x < 0 is, in fact the separatrix physically corresponding to

the critical line separating the two phases. The other branch (y = x for x > 0) corresponds

to the “relevant direction” describing the high temperature (free vortex) phase. All flows
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starting “above” the separatrix are “attracted” to this relevant direction. Note that the

parameter t ∼ (T − TKT ) thus represent the reduced temperature, since it measures the

distance from the critical hypersurface y = −x.

Correlation length

Let us calculate the behavior of the correlation length as the transition is approached from

the high temperature side. The family of curves describing the free vortex phase correspond

to x2 − y2 = t > 0
dx

d`
=

4

π
y2 =

4

π

(
t + x2

)
.

Note that, similarly to other problems at the lower critical dimension, this is a nonlinear

differential equation, which generally produces unusual, i.e. non-powerlaw scaling. This

differential equation can be easily integrated (table integral) and we find

4

π
ln b =

1√
t
arctan

(x

t

)
≈ π

2
√

t
,

since x −→∞ under scaling. We immediately conclude that the correlation length

ξ ∼ b ∼ exp

{
π2

8
√

t

}
.

We conclude that, similarly as in the Heisenberg model in d = 2, or the Ising model in d = 1,

the correlation length diverges exponentially as the transition is approached (although we

find here
√

T − TKT in the argument of the exponent).

The free energy per unit volume is generally expected to scale as

f ∼ ξ−d,

giving in our case (d = 2)

f ∼ exp

{
− π2

4
√

t

}
.

In contrast to conventional critical phenomena, this is only a weak “essential” singular-

ity, where all the derivatives vanish. Therefore the specific heat does not diverge at the

Kosterlitz-Thouless transition, making it more difficult to observe it experimentally. The

specific heat only has a broad “hump” at temperatures somewhat above TKT , where much

of the entropy is released as the number of free vortices starts to rapidly drop.
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Spin stiffness

A similar argument can be used to determine the critical behavior of the renormalized spin

stiffness Keff = g(b −→∞)−1 as the KT transition is approached from the low temperature

side. Here

x2 − y2 = |t| .

Under rescaling y −→ 0, and we find

x ≈ −
√
|t|.

Since

x = g − π/2 = K−1 − π/2,

we conclude

Keff ≈
2

π
+

4

π2

√
|t|.

This quantity can be directly measured in superfluids, confirming the prediction of the

KT theory. Many other two dimensional systems display phase transitions that belong

to the Kosterlitz-Thouless universality class. In all these cases, the phase transition is

Dislocation in a 2D crystalDislocation in a 2D crystal

driven by unbinding of topological point defects. In 2D melting, the topological defects

are dislocations. As we can see from the figure, such dislocations can only be formed in

pairs, and thus can “annihilate” each other. Similar dislocations are found in smectic liquid

crystals.
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Spin chains with long-range interactions and quantum impurity models

An important class of models that also show phase transitions very similar to the vortex

unbinding of Berezinskii, Kosterlitz, and Thouless, include classical spin chains with long

range interactions. For example, the Ising model with long range interaction is given by the

Hamiltonian

H = −J
∑
ij

SiSj

R2−ε
ij

,

Rij is the distance between spins i and j, and 0 < ε < 1 is an exponent describing the

interaction form. This class of models, as well as the version with O(N) spins can all be

treated with RG methods very similar to those used in d ≥ 2 classical spin models with

short range interactions [J. M. Kosterlitz, Phys. Rev. Lett. 37, 1577 (1976)]. The essential

new feature for this class of models (as well as its generalization in d > 1) is the fact that the

lower critical dimension is modified if the interactions are of long enough range (ε ≥ 0). In

a sense, the 1/R2 spin chains prove to be the equivalent of short range models at their lower

critical dimension, and the O(N) models (N > 1) have a marginal β-function, and the Ising

version shows a KT-like transition. For ε > 0 a regular phase transition is found, where

powerlaw behavior near the critical point is found, with critical exponents that depend on ε.

These can be calculated using and ε-expansion approach, as presented in the 1976 Kosterlitz

paper.

Fro a practical point of view, these long-range spin chains do not have a direct application

to actual spin systems, since exchange interactions are generally of short range. However, this

class of models proved crucial to understand the behavior of dissipative quantum impurity

models, since the dissipative baths generically induce long-range interactions in time.

Kondo model

The solution of the Kondo model by Anderson, Yuval, and Hamann (AYH) came histor-

ically even before the KT theory, and presented perhaps the first consistent RG calculation

as applied to phase transitions. The Kondo model describes a localized magnetic moment

such as manganese embedded in a metal such as gold. The Kondo interaction JK between

the Kondo spin and the conduction electrons tends to form a magnetically inert singlet state

below the Kondo temperature TK . This Kondo temperature proves to be an exponential
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function of microscopic parameters such as the Kondo coupling JK and the density of states

ρc for conduction electrons

TK ∼ exp{−1/ρcJK}.

The theoretical solution of this deceivingly simple problem took a surprisingly long time

preceding the seminal AYH work, who succeeded in mapping the behavior of this model

onto the solution of an Ising spin chain with 1/R2 interactions. In this mapping, the tun-

neling events where the local moment spin flips due to scattering with conduction electrons,

correspond to domain walls of the equivalent Ising chain. In this respect, the problem is

similar to ordinary tunneling in of a two-level system. The physically new feature is the

fact that conduction electrons represent a dissipative bath, and as a result the tunneling

events are not independent. Instead, they feature long-range interactions in time, and the

the equivalent Ising chain acquires long-range interactions.

The mapping produced by AYH was achieved by an appropriate discretized path integral

representation of the partition function, where the correlations along the spin chains were

used to describe the time correlations of the Kondo spin. The appropriate correlation length

ξ of the spin chain, thus corresponded to the characteristic correlation time τξ of the Kondo

spin, which is inversely proportional to the binding energy of the Kondo singlet

~
τξ

∼ TK .

The RG equations describing this model were derived following a procedure similar what

Kosterlitz later used for the XY model (indeed following the pioneering AYH work), and

take precisely the same form. One interesting difference is the following. Careful calculations

show that for the isotropic Kondo problem the bare values of the reduced temperature of

the equivalent Ising chain x and the scaled fugacity y prove to lie precisely on the “diagonal”

line x = y. In addition, the bare value of the reduced temperature x proves proportional

to the dimensionless Kondo coupling g ∼ ρcJK . Thus setting x = y = g in the above RG

equations we find
dg

d`
= g2.

Note that this RG equation has precisely the same form as that of the d = 2 Heisenberg

model (unstable fixed point at J = 0), and we find

1

g(b)
=

1

go

− ln b,
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and the correlation length (i.e. the correlation time in the quantum language) is

τξ ∼ b ∼ exp

{
1

ρcJK

}
.

Note that the square root under the exponential is missing, as compared to the standard

KT transition result. In the Kondo model this is a result of the special bare values of

the coupling constants corresponding to the isotropic Kondo spin. In case of anisotropic

coupling of the Kondo spin to the conduction electrons (see the papers by AYH for details)

the initial condition relating the bare values of x and y is violated and the standard KT

result is obtained.

The phase transition in the Kondo model corresponds to the (bare) Kondo coupling

changing sign. For JK > 0 (i.e. antiferromagnetic coupling of the Kondo spin to the

conduction electrons), the “fugacity” y ∼ JK is a relevant operator. Physically, this means

that the nuber of spin flips proliferates, and the Kondo spin forms a singlet state with the

conduction electrons. In the opposite JK < 0 (ferromagnetic Kondo coupling) case , the

fugacity (and thus JK ) scales to zero. No spin flips remain, and the spin in “frozen” in time

- corresponding to the long range order of the equivalent Ising chain.

In recent years, the mapping of the Kondo-type quantum impurity models to classical

spin chains and the associated Coulomb gas representations became a veritable industry,

with hundreds of papers published and applied to a variety of models and situations in solid

state physics.

Dissipative two-state system

Another interesting application of the long-range spin chain technology as found in ex-

amining the dynamics of a tunneling two-level system coupled to a dissipative bosonic bath

such as a system of harmonic oscillators. We already discussed the problem of an isolated

tunneling center, as described by the Action

S[x(t)] =

∫ β~

0

dt

[
1

2

(
dx

dτ

)2

+ V (x)

]
,

with the potential V (x) having two or more minima between tunneling takes place. We

have already seen how the T = 0 partition function of the problem maps onto an equivalent
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d = 1 Ising model, and how domain walls of the latter correspond to the tunneling events

(“instantons”) of the former.

We now couple this particle to a bosonic bath, which is described by a Gaussian action

of coupled harmonic oscillators. Since any Gaussian integral can be easily carried out, one

is able (as Caldeira and Leggett did) to formally integrate out the harmonic oscillators,

resulting to an additional “dissipative” contribution to the Action that takes the form

δSα[x(t)] = α

∫ β~

0

dt

∫ β~

0

dt′x(t)K(t− t′)x(t′),

where the asymptotic form at long times

K(t) ∼ 1

t2−ε
.

A bath with ε = 0 is called an “Ohmic” bath, but one an also consider “sub-Ohmic” baths

with ε > 0.

One may study the tunneling processes in presence of such a dissipative bath. As we can 

see, the problem is mathematically identical to an Ising model with long-range interactions, 

and one expects a phase transition for sufficiently strong dissipation (corresponding to the 

interaction J of the Ising chain), where long range order (in time) emerges, corresponding 

to the localization (absence of tunneling) of the quantum particle. From the technical point 

of view, the problem can be mapped to the Coulomb gas using the instanton approach, 

or one can use the mapping to the equivalent (dual) Sine-Gordon model. Using the latter 

method, RG equations can be derived - which again prove to be identical (for ε = 0) to 

those of Kosterlitz and Thouless, showing how the phase transition belongs to the same 

universality class. We will not provide further details here. The interested reader is refereed 

to a nice summary in the lecture notes by Ben Simmons, which also has a list of further 

applications and references to original works. Interesting recent examples of these dissipative 

phase transitions is found in the area of “quantum Griffiths phases” emerging as disorder is 

introduced near quantum critical points. The interplay of quantum criticality, dissipation, 

and rare even formation, can often lead to puzzling phenomena such as “Disorder-Induced 

non-Fermi Liquid Behavior”. For a recent review, see: E. Miranda and V. Dobrosavljevic, 

Disorder-Driven Non-Fermi Liquid Behavior of Correlated Electrons, Reports on Progress in 

Physics, 68, 2337–2408 (2005)


