
Controlling Mean-Field Theory

Mean field theories of Van der Waals and Weiss provide a decent description

of the gross qualitative features describing first and second order phase transi-

tions. In their historic form, however, they have been derived in a rather heuristic

and uncontrolled fashion, leaving it unclear precisely how accurate these theories

are. After these early successes of theory, refined experiments revealed a number

of shortcomings of such approaches, in particular in their descriptions of the

critical point. In the following we fist explore a slightly more rigorous formu-

lation of these theories, which also indicate how systematic corrections can be

obtained and calculated.

Heuristic derivation revisited

We concentrate on a model of an Ising ferromagnet, with the Hamiltonian

H = −J

2

∑
<ij>

SiSj − h
∑

i

Si,

where Si = ±1, and the lattice sum runs over all pairs of nearest neighbor sites on a given

lattice, and h is an external magnetic field. As we have seen, the simplest way to obtain the

Weiss theory is to replace

hi = J
z∑

j=1

Sj → hW = J

〈
z∑

j=1

Sj

〉
= Jz 〈Sj〉 = Jz m.

where z is the coordination number (number of neighbors to any given site), and m is the

magnetization per spin. Physically, it is clear what this approximation amounts to. The

instantaneous (fluctuating) molecular field hi acting on the spin Si is being replaced by its

thermal average, the ”Weiss field” hW .

When is this justified? Are the results qualitatively or only quantitatively incorrect? To

answer this question precisely, we have to identify some limit where the approximation is

exact, and then examine systematic corrections.
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Infinite range model

A simple argument clarifies precisely when is the mean field theory exact. At any finite

temperature, the instantaneous orientations of spins are random, thus the molecular field hi

is simply a sum of z random numbers. As we know from elementary statistics, any sum of

random numbers is increasingly well represented by its algebraic average, provided that the

number of terms becomes larger and larger. We this expect mean field theory to be a good

approximation for z sufficiently large. But how large? Well...most certainly in the limit of

large coordination z →∞. But isn’t this limit pathological? Not necessarily! If we properly

scale the interaction with the coordination number J → J/z, and then take the z → ∞

limit, then the (free) energy per spin will remain finite, while mean field theory becomes

exact. In the following we present a formal calculation to calculate the partition function

exactly in the z →∞ limit.

Gaussian transformation

We concentrate on an infinite range model having N lattice sites, where each spin interacts

with each other spin with exactly the same interaction J/N (in this case z = N − 1 ≈ N

for N large). In this case the Hamiltonian can be written as

H = − J

2N
S2; S ≡

N∑
j=1

Sj.

The partition function is

Z = Tr exp{−βH} =
∑

{Si=±1}

exp

{
βJ

2N
S2 + βhS

}
.

To rewrite this in a convenient way, such that we end up in an expression being a simple

exponential in S, we use the Gaussian identity

exp

{
βJ

2N
S2

}
=

(
βJ

2π

)1/2 ∫
dt exp

{
N

t2

2βJ
+ tS

}
.

The partition function takes the form

Z =

(
βJ

2π

)1/2 ∫
dt exp

{
N

t2

2βJ

} ∑
{Si=±1}

exp

{
(βh + t)

N∑
j=1

Sj

}
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We note that the second second exponential looks just like a Boltzmann factor for N in-

dependent spins in an external field h + t/β. The spin sum then factors out and we can

write

Z =

(
βJ

2π

)1/2 ∫
dt exp

{
−N

t2

2βJ

}
[Z1(t, h)]N ,

where

Z1(t, h) =
∑

{Si=±1}

exp {(βh + t)Sj} = 2 cosh {βh + t} .

We get

Z =

(
βJ

2π

)1/2 ∫
dt exp

{
N

(
− t2

2βJ
+ ln cosh {βh + t}+ ln 2

)}
.

We have thus reduced the calculation of the partition function to a Gaussian integral, which

is exact in this infinite range model.

Saddle point solution

At finite N the integral must be computed numerically, but the situation amazingly

simplifies in the large N limit! This is easiest to appreciate if we simply use the computer

to numerically plot the integrand for some large but finite N . We find (Problem 2.1)

that for N large, the integrand is strongly peaked at some specific value(s) of tmax. In this

limit, the integrand essentially looks like one (or several, see below) delta functions, and we

can evaluate the integral by a saddle-point method. What’s the idea? Simply, if we have a

sharply peaked integrand, then we can first identify where the peak is, and then approximate

the integrand by a Gaussian centered at the peak.

In practice, the integrand has a sharp peak, wherever the expression

f(t, h) = − t2

2βJ
+ ln cosh {βh + t}+ ln 2

has a maximum, i.e. f ′(tmax = βJm) = 0 (we have called the position of the peak tmax =

βJm. We get

m = tanh (βh + βJm) ,

precisely the Weiss self-consistency condition. We have already seen how this equation can

be solved, and how nontrivial m 6= 0 (for h = 0) solution emerges at T < Tc = J (remember

that the coordination number z = N is absorbed in our definition of the interaction J).
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But is this justified. In the following we will see how the procedure is valid only in the

thermodynamic limit N →∞.

Spontaneous symmetry breaking in the thermodynamic limit

Where are the saddle-point solutions (maxima of the integrand). We have seen that they

are determined by the solution of the Weiss equation. Thus, there is only one solution, thus

only one sharp peak of the integrand for T > Tc. For h = 0 the peak is precisely at t = 0,

and for h finite it shifts left or right. However, since the integrand is symmetric, we can

immediately see that the resulting expression for the partition function Z(h) is an even

function of the external field h. Thus the zero-field magnetization per spin

m = lim
h→0

1

N

∂

∂βh
ln Z(h) = 0.

(This is because for even function the first derivative vanishes at the origin). At T > Tc this

is what we expect anyway. But what happens at T < Tc?

At T < Tc we can see easily see that the Weiss equation now has two nontrivial solutions,

and one trivial solutions. At h = 0 these correspond to two sharp maxima at tmax = ±βJm

and one very shallow minimum at t = 0. Within our saddle-point scheme, and if we have

more then one sharp maximum of the integrand, the proper evaluation is obtained only if

we sum over all these saddle-point solutions. Now comes the confusing part!!! At h = 0

these peaks are completely symmetrically distributed around zero, and just as before, we

conclude that Z(h) is an even function of the external field h!!!. Does this mean that there

is no spontaneous magnetization??!! Well...it depends. At any finite N , the argument is

perfectly correct, in agreement with our previous qualitative analysis suggesting no sponta-

neous symmetry breaking for any finite size system. But how could the result be possibly

different in the thermodynamic limit N →∞?

Well...it can! And to see this, let us turn on a small but finite external field h and

carefully evaluate the two saddle-point contributions to the integral. To leading order (when

the peaks are very sharp), the contribution to the integral from each saddle point can simply

be estimated by replacing the integral by the integrand evaluated at the saddle point:

Z(h) ∼ exp{Nf+(h)}+ exp{Nf−(h)}.
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Here, t± ≈ ±βJm, and

f±(h) = f(t±, h) = −
t2±

2βJ
+ ln cosh {βh + t±}+ ln 2.

Since f(t, h = 0) is an even function of t,

f+(0) = f−(0) = f(0) = −βJm2

2
+ ln cosh {βJm}+ ln 2,

and they differ very little for h small, where we find by expanding in h

f±(h) ≈ f(0)± βh tanh {βJm} = f(0)± βhm.

We can therefore write

Z(h) ∼ exp{Nf(0)} [exp{Nβhm}+ exp{−Nβhm}] .

Now comes the interesting part! Consider first N finite and let h → 0. As we can see,

the partition function is still an even function of h, thus no ferromagnetism emerges! In

contrast, consider a small but finite field h > 0. The let us approach the thermodynamic

limit N →∞. As we can see, one of the exponents in this limits blows up, while the other

vanishes exponentially fast in N ! In the thermodynamic limit we can thus drop one of the

contributions, and the partition function now reads

Z(h) ∼ exp{Nf(0) + Nβhm}.

Using the formula for the magnetization, we immediately see that now m 6= 0 and ferromag-

netism emerges!

This example is very instructive, since it makes it clear on an exactly solvable model how

the limits h → 0 and N → ∞ do not commute, so that qualitatively new physics emerges

in the thermodynamic limit.

Large coordination limit generalized

As we can seen, the limit of large coordination (or equivalently large dimensions; z = 2d

on hypercubic lattices) offers a situation where the many-body problem can be systematically

yet exactly solved, yet preserving a number of nontrivial features of the exact solution. The

example we explored it the simplest one that comes to mind. The method is general, and it
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has been used a great deal to explore the phase transitions is many classical and quantum

systems. For example, we can use it for a clasical Heisenberg antiferromagnet in a uniform

external field (Problem 2.2), to show how the susceptibility has a cusp at TN , the specific

heat jumps (in this mean-field limit), and many other features.

A veritable industry using this general approach has emerged in the last ten years to

study the Mott-Hubbard transition and other examples of strongly correlated electrons (see

“The Local Impurity Self Consistent Approximation (LISA) to Strongly Correlated Fermion

Systems and the Limit of Infinite Dimensions” by A. Georges, G. Kotliar, W. Krauth, M.

Rozenberg, Rev. Mod. Phys. 68, 13 (1996)). Another line of work using similar approaches

combined with the ”replica symmetry breaking” methods has been applied to glassy systems

by Parisi and his followers since 1980. An application to the glassy behavior of electrons has

been presented in the following paper: “Nonlinear screening theory of the Coulomb glass”,

by S. Pankov, V. Dobrosavljevic, Phys. Rev. Letters 94, 046402 (2005).


