
Perturbation theory below d = 4 and the Ginzburg region

As the problem becomes exactly solvable for d > 4, one may guess that just

below d = 4 the effects of the uφ4 term may prove to be ”small”, and one

may be able to use a perturbation theory. Let us see what can be learned by

straightforward perturbation theory

Perturbation theory in uφ4

Calculating perturbation theory corrections in uφ4 is essentially the same problem en-

countered in quantum field theory for particles interacting through weak two-body forces.

Different terms in the perturbation theory can be nicely classified using a graphical repre-

sentation through ”Fenyman diagrams”. Since this techniques is already familiar to people

familiar with field theory or many-body theory methods we will not elaborate a great deal

on technical details, but will instead focus on the physics.

The first calculation that we would like to do in this framework is the evaluation of a

leading perturbative correction to the spin susceptibility. We need to calculate

χ = G(k = 0) =

∫
dx eikx < φ(0)φ(x) > .

At a Gaussian level (u = 0), we know that χo = Go(k = 0) = r−1. We need to ”renormalize”

the propagator G(k) to leading order in u. In general, one can write

G(k) = [r + k2 − Σ(k)]−1,

defining the ”self-energy” Σ(k). We need to calculate the renormalized ”mass” r̃ = r−Σ(0).

How to do it?

First, calculate the leading correction to the propagator G(x)

G(x) =< φ(0)φ(x) >=
1

Z

∫
dφφ(0)φ(x) exp{−So − Sint},

where (we set j = 0)

So =
1

2

∫
dxφ(x) [r−∇2]φ(x),

and

Sint =
u

4

∫
dx φ4(x).
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FIG. 1: One loop diagrams that renormalize the ”mass” r (left), and the interaction amplitude u

(right).

We expand the Boltzmann factor to leading order in u

exp{−Sint} ≈ 1− u

4

∫
dx φ4(x),

And we get

G(x− y) = Go(x− y)− u

4

∫
dx′
〈
φ(x)φ(y)φ4(x′)

〉
o

+O(u2).

Here, the expectation value 〈· · · 〉o is taken with respect to the Gaussian action So, and the

Wick’s theorem applies (note the combinatorial factor 12)

〈
φ(x)φ(y)φ4(x′)

〉
o

= 12Go(x− x′)Go(0)Go(x
′−y).

In deriving this result, we have used the ”linked cluster theorem” that ”disconnected” dia-

grams cancel out due to the 1/Z prefactor. In momentum space we find

G(k) = Go(k) +Go(k)Σ(k)Go(k) + · · · ,

with

Σ(k) = −3u

∫
dk′

(2π)d
Go(k

′) +O(u2).

To compute the shift of the critical temperature, we need to calculate the inverse suscepti-

bility χ−1 = G−1(k = 0), and to leading order in u we find (Dyson’s equation)

G−1(k) = G−1
o (k)− Σ(k),

giving

χ−1 = G−1(k = 0) = r + δr(r).
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The critical temperature shift is

δr(r) = 3u

∫
dk′

(2π)d
1

r + k2
+O(u2)

It is interesting to look at this result more closely, and examine the behavior of the

correction δr as the mean-field critical point is approached. The integrand is spherically

symmetric, and we can write

δr(r) = 3uKd

∫ Λ

0

dk
kd−1

r + k2

where Kd = Sd/(2π)d, and Sd is the solid angle in d dimensions (e.g. S3 = 4π; K3 =

(2π2)
−1 ≈ 0.05). This integral is infrared-convergent at r = 0, and thus it simply shifts

(down) the critical temperature by a small amount

δro =
3uKd

d− 2
Λd−2.

Assuming that u is small (more precisely to be ”self-consistent”), we can replace r −→ r̃

under the integral, and we find

χ−1 = r̃ ≈ r + 3uKd

∫ Λ

0

dk
kd−1

r̃ + k2

≈ r + 3uKd

∫ Λ

r̃1/2
dk kd−3

= r + δro −
3uKd

d− 2
r̃ d/2−1.

Note that this is a self-consistent equation for r̃(r). We can rewrite this as

r̃ +
3uKd

d− 2
r̃ d/2−1 = r + δro.

Fluctuation correction and the Ginzburg region

We pause to examine in more detail this important result. Note that the fluctuation u-

term decreases with r̃ with a power d/2 − 1 < 1 (i.e. it dominates for r̃ small enough),

provided that d < 4! In this case, the solution takes the form

χ−1 = r̃ ∼

 r + δro, r̃ > r∗

(r + δro)
2/(d−2) r̃ < r∗

,
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where the crossover scale (where the two terms are comparable)

r∗ =

(
3uKd

d− 2

)2/(4−d)

.

The susceptibility still diverges at a finite transition temperature given by r̃ = 0, i.e. r =

−δro, but the critical behavior is qualitatively modified (exponent γ = 2/(d − 2)). We

conclude that the fluctuation corrections cannot be ignored for d < 4. The obtained result

followed from the leading perturbative correction in the interaction amplitude u. If such

a leading term provides a qualitative modifications of the critical behavior, then a naive

perturbative treatment is insufficient, and a more systemic theory is required, as provided

by the RG approach.

We should note, however, that these corrections are only important close enough to the

transition, i.e. within a narrow critical region defined by r̃ < r∗. As an illustration, we

can estimate r∗ in d = 3 using the Weiss theory value u = 1/3, and we get r∗ = (K3)2 ≈

3×10−3. Farther away from the transition, we see that the fluctuations can be neglected, and

the Landau theory remains valid. The same conclusion follows from the RG formulation,as

we will discover in the next lecture.

A similar (one loop) calculation provides a correction for the coupling constant ũ = u+δu,

with

δu = 12u2Kd

∫ Λ

0

dk
kd−1

(r̃ + k2)2 ∼ r̃ d/2−2.

Again, we conclude that the correction is singular (it grows as r̃ −→ 0) for d ≤ 4, and

a straightforward perturbative treatment of fluctuation corrections is insufficient. At this

stage, it is certainly not clear why we should be allowed to stop at any finite order in

perturbation theory. This is why a RG approach must be used, as we discuss in the following.

One final comment is in order. We have noted that the singular corrections arise as

infrared divergences, i.e. from long wavelength (k −→ 0) fluctuations. In any approximation

that only accounts for short-wavelength fluctuations, a finite infrared cutoff would exist, and

all corrections would remain finite. In this case, the qualitative behavior at the critical point

would remain unchanged, and all renormalizations can be absorbed in a finite redefinitions

of Landau parameters r, u, etc. This argument explains why simple-minded extensions of

mean-field theory do not modify the critical behavior, even though their estimates of the

critical temperature, for example, can be considerably improved.


