
Quantum Phase Transitions: T=0 vs. Finite T

In these lectures, much of the material concentrated on classical (thermal)

phase transitions that we understand well. Much of the current research activ-

ity, on the other hand, focuses on quantum effects on phase transitions, that

arise near T = 0 critical points. Many aspects of these fascinating phenom-

ena we do not understand yet, and much work remains to be done before we

have a complete theory. What we do understand, though, is that quantum effects

are generally irrelevant when phase transitions take place at finite temperature.

Here we discuss why this is generally true, and describe the structure of various

crossover regimes around the quantum critical point.

Ising model in a transverse field

Instead of discussing the role of quantum fluctuations in abstract terms (which can often

be confusing), we concentrate on a prototypical model system: an Ising model in a transverse

magnetic field, given by the Hamiltonian

H = −1

2

∑
ij

σz
i Jijσ

z
j − Γ

∑
i

σx
i .

Here, the spin operators are represented by Pauli matrices

σz
i =

 +1 0

0 −1

 ; σx
i =

 0 1

1 0

 .

Physically, the spin operator σz
i represents any kind of two state system, e.g. a magnet

with anisotropic spins , or even an atom in a double well potential. More precisely, the

eigenstates |±〉 of σz
i represent the two corresponding states of the system. The interaction

J favors the neighboring spins to align, just as in the classical Ising model.

In many systems, though, there exist a finite probability for the local degrees of freedom to

tunnel back-and-forth between the two states, as described by the off-diagonal Pauli matrix

σx
i , and of amplitude (tunneling rate) Γ. An isolated tunneling center is characterized by

two (”bonding” and ”anti-bonding”) quantum states

|1/2〉 =
1√
2

[|+〉 ∓ |−〉] ,
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which have energy E1/2 = ±Γ.

Because the tunneling process tends to oppose localizing the spin in one of two states, it

introduces quantum fluctuations that generally reduce ordering. In many physical system

one can experimentally tune the tunneling rate, by modifying the barrier between the two

wells. This model can be used to represent the behavior of hydrogen-bonded ferroelectrics

such as potassium di-hydrogen phosphate (KH2PO4), where the crystal lattice is formed

of phosphate (PO4) tetrahedra connected by “hydrogen bonds”. In a hydrogen bond two

tunnelingtunneling

oxygens “share” one hydrogen ion, i.e. a proton. The proton can “sit” either close to one or

the other oxygen; its energetics can be described by a double-well potential. If the proton

happens to sit next to one of the two oxygens, this induces a dipole moment in the crystal

lattice. It proves energetically favorable to line-up so formed electrical dipole moments, and

the crystal assumes ferroelectric ordering.



3

However, since hydrogen is the lightest element, and the barriers separating the two wells

are of moderate height, there proves to be appreciable tunneling between the two potential

minima. This tunneling rate can be experimentally tuned by applying hydrostatic pressure

which reduces the unit cell size, and thus the height of the barrier separating the wells.

As the pressure increases, the critical temperature for ferroelectric ordering drops, and the

ordered phase is completely destroyed at a critical pressure P = Pc. Such a T = 0 phase

transition is called a quantum critical point, since in its vicinity quantum fluctuations

cannot be ignored. In the following we outline a theoretical approach that can be used to

describe the quantum critical behavior.
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FIG. 1: Generic phase diagram around a quantum critical point (QCP). Classical critical behavior

is expected in a narrow region around the finite-temperature critical line (red). Quanum effects

modify the critical behavior if the transition is approached by tuning the quanum fluctuations at

T = 0 (green), and even within the so-called “quantum critial” regime (purple). In the antiferro-

electric potassium di-hydrogen posphate (KH2PO4), the tunneling rate within the hydrogen bonds

can be tuned by applying pressure, driving the system through a quantum critical point.
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Quantum statistical mechanics

For quantum systems the partition function can be written as the trace of the density

matrix

Z = Tr Tτ exp

{
1

2

∑
ij

∫ β

o

dτσz
i (τ)Jijσ

z
j(τ) + Γ

∑
i

∫ β

o

dτσx
i (τ)

}
.

Here, Tτ represents the time (temperature) ordered product in the Heisenberg represen-

tation, where the operators become functions of the imaginary time τ . We assume that

the reader is already familiar with this formalism, as discussed in many standard texts on

quantum many-body problems.

To describe the critical behavior, we follow the same strategy as for classical models,

where it proved useful to represent the partition function as a functional integral over

the fluctuations of an appropriate order parameter field. To do this, we again perform

a Hubbard-Stratonovich transformation to decouple the interaction term

−1

2

∑
ij

∫ β

o

dτ σz
i (τ)Jijσ

z
j(τ) −→ 1

2

∑
ij

∫ β

o

dτ φi(τ)J−1
ij φi(τ)−

∑
i

∫ β

o

dτ σz
i (τ)φi(τ).

The partition function takes the form

Z =

∫
Dϕ exp

{
−1

2

∑
ij

∫ β

o

dτ φi(τ)J−1
ij φi(τ)

}

×
∏

i

Tr Tτ exp

{∫ β

o

dτ [φi(τ)σz
i (τ) + Γσx

i (τ)]

}
.

In this expression, the last term looks precisely as the partition function of noninteracting

quantum spins in presence of an (imaginary) time-dependent external (longitudinal) field

ϕi(τ). To derive a quantum version of a Landau functional, we again formally expand the

logarithm of this term in powers of the order-parameter field ϕi(τ). As usual, we only keep

(see Appendix A) the lowest order contributions in (Matsubara) frequency and momentum,

since we expect the rest to be irrelevant by power counting.

The resulting Landau functional takes the form

S =
1

2

∫
dx

∫ β

o

dτ φ(x,τ) [r−∂2
τ −∇2] φ(x,τ) +

u

4

∫
dx

∫ β

o

dτφ(x, τ) .

An explicit expression for the “mass” r in terms of the interaction J and the tunneling rate

Γ takes the form

r =
1

Jz
− tanh βΓ

Γ
.
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[Note here that in this quantum case, the definition of r and u differs by a factor β from

the ones used in the classical model. Defined like this, r remains finite even in the T = 0

limit, were it indicates the stability of the paramagnetic phase for sufficiently large Γ.] The

mean-field critical line is obtained by setting r = 0, or

1

βJz
=

tanh βΓ

βΓ
.

In the classical limit (βΓ � 1) we find Tc/Jz = 1, and in the opposite T = 0 limit (βΓ � 1)

the quantum critical point is found at

Γc/Jz = 1.

In the above expression for the Landau functional, the fields ϕj(τ) representing Bosonic

spin excitations are periodic functions of (imaginary) time ϕj(τ + β) = ϕj(τ). The corre-

sponding Matsubara frequencies are ωn = 2πn, with n = 0,±1,±2, ... Note that in deriving

this result we have chosen the units of both the length and the time (i.e. the temperature)

so that the action assumes a “Lorentz-invariant” form (i.e. the coefficients of ∂2
τ and ∇2 are

the same).

We pause to fully appreciate this important result. At T = 0, β −→∞, and the partition

function takes precisely the same form as in classical statistical mechanics for a system in

D = d + 1 dimensions. The time effectively plays a role of an additional dimension, but no

essentially new features are added. All the results that we have obtained so far still hold, and

we can immediately read-off the critical behavior. At T = 0, the quantum fluctuations play

the role of thermal fluctuations in the classical problem, and magnetic ordering is destroyed

when they are sufficiently large.

Finite temperature crossovers

The situation is more complicated at finite temperature. Here, partition function still

looks just like that of a classical system in D = d − 1 dimensions, but with an important

difference. Namely, the system “size” is still infinite in d spatial dimensions, but now becomes

finite in the “time” direction. This new feature has important consequences for the critical

behavior. The same situation is found in a classical system where the sample has finite size

in one of the d dimensions.
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We should emphasize that this subtlety proves of relevance only if fluctuation corrections

to mean-field theory are examined. This is true since the fluctuation corrections acquired

singular contributions precisely from long-wavelengths, and these will be cut-off if we have

a finite system size. Physically, as soon as the correlation length becomes longer then the

“thickness” of our system, the “infrared” divergence in the appropriate dimensions will be

cut-off, and the system effectively behaves as that of a reduces dimensionality.

In the quantum case we consider, the finite temperature introduces a cutoff in the time

dimension. We conclude that the leading critical behavior will be exactly the same as that of

the corresponding classical system. The quantum fluctuations are, therefore, irrelevant for

the leading critical behavior at finite temperature. To be precise, at very low temperature

the relevant temperature cutoff will be very small. We thus expect its effects to be important

only in an infinitesimally narrow crossover regime between the critical temperature Tc and

the quantum-classical crossover scale Tcl. We expect this “classical” crossover regime (shown

by dashed red lines on the phase diagram) to shrink to a point precisely at the QCP, i.e. at

T = 0.

Similarly, within the quantum disordered phase, the fluctuations are “massive”, i.e.

r > 0. Quantities like the order parameter susceptibility thus remain finite down to T = 0.

However, finite temperature again introduces a new cutoff that should be compared to r. As

soon as the temperature cutoff is large enough, it washes out the effects of the mass r, and

the behavior is modified. We thus expect another crossover scale T ∗ to emerge, separating

the quantum critical region and the low temperature quantum disordered regime. This scale

is also expected to vanish in a powerlaw fashion as the QCP is approached. The genuine

quantum effects dominate within the quantum critical regime, which is expected to broaden

as temperature increases. This makes it possible to observe such quantum critical behavior

even in finite temperature experiments, despite the fact that the QCP is located at T = 0.

Infrared divergences and finite temperature cutoffs

A precise description of the quantum critical behavior and the associated finite tem-

perature crossovers requires careful analysis which is beyond the scope of our presentation.

Within the quantum Landau landau formulation we discussed, this calculation is in principle

straightforward, since it reduces to an appropriate finite size scaling analysis of an effective
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classical model. For our purposes it will be sufficient to illustrate these ideas by examining

the leading fluctuation corrections to mean-field theory, and by determining how their form

is modified at finite temperature.

To be specific, let us examine the one-loop “mass” renormalization. The expression

derived in the classical model not generalizes to

r̃ = r + 3uT
∑
ωn

∫
dk

(2π)d

1

r̃ + ω2
n + k2

+ O(u2).

At T = 0, the Matsubara sum can be replaced by an integral

T
∑
ωn

−→
∫ +∞

−∞

dω

2π
,

and we get

r̃ = r + 3u

∫ +∞

−∞

dω

2π

∫
dk

(2π)d

1

r̃ + ω2 + k2

= r + 3u

∫
dd+1q

(2π)d+1

1

r̃ + q2
,

where q = (ω,k) is a (d + 1)-dimensional vector. The calculation clearly reduces to that of

a classical (d + 1)-dimensional system.

The situation is different at T 6= 0. Now we separate the ωn = 0 contribution, and write

r̃ = r + 3uT

∫
dk

(2π)d

1

r̃ + k2
+ 3uT

∑
ωn 6=0

∫
dk

(2π)d

1

r̃ + ω2
n + k2

.

In the last term we can again replace the Matsubara sum by an integral, but this time with

a lower cutoff ωo = 2πT , which provides a “mass”

r̃ = r + 3uT

∫
dk′

(2π)d

1

r̃ + k2
+ 3u

∫
dd+1q

(2π)d+1

1

r̃ + ωo + q2
.

We can now explicitly evaluate these integrals and get

r̃ = r + δro +
3uTKd

d− 2
r̃ (d−2)/2 +

3uKd+1

d− 1
(r̃ + ωo)

(d−1)/2 .

We have two fluctuation corrections. The first one ∼ r̃ (d−2)/2 is the same as in the classical

case, corresponding to the static (ωn = 0) fluctuations. The second one is, on the other

hand, cut-off close to the critical line (r̃ −→ 0), and can be ignored there. We conclude that

the most singular correction to the critical behavior is precisely of the same form as in the

classical theory, just as we anticipated. However, the last term dominates sufficiently far

from the transition (r̃ not too small), and the behavior is modified.
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Epilogue

We will not explore further details of this rich crossover behavior. Still, what we have

seen is sufficient to start appreciating why quantum fluctuations are irrelevant near finite

temperature critical points. This phenomenon is, of course, much more general then the

specific example we have discussed, and represents one of the lessons that we consider as

well established.

In contrast, there are still many questions in the area of quantum critical phenomena

that remain hard to understand, and which perhaps indicate some fundamental limitations

of the paradigm that we have explored. In recent years, more and more examples of quantum

critical phenomena seem to emerge that do not fit well in the Landau-based picture that

we cherish. Most puzzling phenomena are found when quantum critical phenomena are

examined in strongly correlated metals, such as heavy fermion compounds and oxides close

to the Mott transition. In many of these systems, standard power counting approaches

suggest that mean-field predictions should be sufficient in d = 3. Yet most experiments

seem at odds to what simple theories predict. Many researchers believe that excitations

other then long-wavelength spin wave modes may be crucial at the critical point, and that

Kondo-like processes must be reexamined more carefully. Others search for even more exotic

topological excitations, generalizing the ideas of Kosterlitz and Thouless. What will be the

final answer? Time only will tell. One thing is certain: we have a long way to go...
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Appendix A: cumulant expansion

We now carry out the cumulant expansion to obtain an appropriate Landau functional.

We also add a small (longitudinal) field at each lattice site

δSh(i) = −
∫ β

o

dτ hi(τ)σz
i (τ),

in order to calculate correlation functions

χij(τ − τ ′) =
δ2

δhi(τ)δhj(τ ′)
ln Z[h].

We can write the effective Action in the form

S[φ, h] =
1

2

∑
ij

∫ β

o

dτ φi(τ)J−1
ij φj(τ) +

∑
i

Vloc[φ + h],

where

Vloc[φ] = − ln TrTτ exp

{∫ β

o

dτ [φi(τ)σz
i (τ) + Γσx

i (τ)]

}
Let us first shift the φ-fields by the external field h

φi(τ) −→ φi(τ)− hi(τ),

in order to eliminate hi(τ) from Vloc[φ + h]. We get

S[φ, h] =
1

2

∑
ij

∫ β

o

dτ (φi(τ)− hi(τ)) J−1
ij (φj(τ)− hj(τ)) +

∑
i

Vloc[φi]

=
1

2

∑
ij

∫ β

o

dτ hi(τ)J−1
ij hj(τ)−

∑
ij

∫ β

o

dτ φi(τ)J−1
ij hj(τ) + S[φ],

with

S[φ] =
1

2

∑
ij

∫ β

o

dτ φi(τ)J−1
ij φj(τ) +

∑
i

Vloc[φi].

From this expression, we find

δ

δhi(τ)
ln Z[h] =

1

Z[h]

[∑
j

∫ β

o

dτ J−1
ij 〈−hj(τ) + φj(τ)〉S[φ,h]

]
,
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and

χij(τ − τ ′) =
δ2

δhi(τ)δhj(τ ′)
ln Z[h]

=
δ

δhj(τ ′)

1

Z[h]

[∑
j

J−1
ij Tr

[
(−hj(τ) + φj(τ)) e−S[φ,h]

]]
= J−1

ij [Gij(τ − τ ′)− δ(τ − τ ′)] ,

where Gij(τ − τ ′) = 〈φi(τ)φj(τ)〉c denotes the connected Green’s function corresponding to

the Action S[φ].

Next, we perform the cumulant expansion of Vloc[φ], as follows

Vloc[φi] =
1

2

∫ β

o

dτ

∫ β

o

dτ ′ φi(τ)Γ(2)(τ − τ ′)φi(τ
′) + O(φ4).

We explicitly calculate only the form of the two-point vertex Γ
(2)
ij (τ − τ ′)

Γ(2)(τ − τ ′) =
δ2

δφi(τ)δφi(τ ′)

[
− ln TrTτ exp

{∫ β

o

dτ [φi(τ)σz
i (τ) + Γσx

i (τ)]

}]
= 〈σz

i (τ)σz
i (τ

′)〉o = −χo(τ − τ ′)

where 〈· · · 〉o indicates a isolated-spin correlation function, corresponding to the noninter-

acting quantum Hamiltonian

Ho = −Γ
∑

i

σx
i .

It is not difficult to explicitly calculate χo(τ − τ ′) [see, e.g. V. Dobrosavljevic and R. M.

Stratt, Phys. Rev. B 36, 8484 (1987)], and one finds

χo(τ) =
cosh [βΓ (1− 2τ)]

cosh [βΓ]
.

At low frequency, we can write

χo(ωn) = χo − aω2
n + · · · ,

where

χo =

∫ β

o

dτχo(τ) =
tanh βΓ

βΓ
.

Finally, we get an expression for the Landau Action of the form

S[φ] =
1

2

∑
ij

∫ β

o

dτ

∫ β

o

dτφi(τ)
[
δ(τ − τ ′)J−1

ij + χo(τ − τ ′)
]
φj(τ) +

u

4

∑
i

∫ β

o

dτφi(τ) .

From this result we can immediately read-off an expression for the “mass”

r =
1

Jz
− tanh βΓ

Γ
.




