
Surface Roughening and the Sine-Gordon Model

The Coulomb gas model representing vortices in the XY model describes the

Kosterlitz-Thouless transition where vortices unbind. A very similar phase tran-

sition (same universality class) arises in the problem of “surface roughening”

described by the so-called Sine-Gordon (SG) model. We show how the two mod-

els can be related by a “duality” transformation. This is convenient, since the SG

model can be studied using the same momentum shell RG procedure of Wilson

which we are already familiar with.

Mapping the Coulomb gas to the Sine-Gordon model
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We have already seen that the energy of a system of vortices takes the

same form as that of a system of charges interacting through a two-dimensional

Coulomb potential Vc(x) = 1
2π

ln |x|

Svort[ni] =
∑

i

βEon
2(xi)−

4π2

g

∑
i<j

n(xi)Vc(xi−xj) n(xi).
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Here, we can restrict our attention to charge n = ±1 vortices, since those dominate near

the vortex-unbinding KT transition. Here it proves convenient to use the grand canonical

ensemble, where the number of vortices is not conserved, and each site in the lattice can

have n(xi) = 0,±1 vortices sitting on it [to be rigorous, vortices “live” on a dual lattice,

whose lattice sites are located at the centers of “plaquettes” of the original lattice]. The

corresponding (grand) partition function can be written as

Zvort =
∑

{n(xi)=0±1}

exp{−βEvort[n(xi)]}.

We now perform a Hubbard-Stratonovich transformation to decouple the interaction term

by introducing a “potential” field ϕ(xi)

−1

2

4π2

g

∑
i6=j

n(xi)Vc(xi−xj) n(xi) −→ i
∑

i

n(xi)ϕ(xi)−
1

2

g

4π2

∑
i6=j

ϕ(xi)V
−1
c (xi−xj)ϕ(xi).

The partition function takes the form

Zvort =

∫
Dϕ(x) exp

{
−1

2

g

4π2

∑
i6=j

ϕ(xi)V
−1
c (xi−xj)ϕ(xi)

}

×
∏
xi

 ∑
n(xi)=0±1

exp
{
in(xi)ϕ(xi)− βEon

2(xi)
} .

Finally, we sum over the vortex occupation numbers n(xi) = 0± 1∑
n(xi)=0±1

exp
{
in(xi)ϕ(xi)− βEon

2(xi)
}
≈ 1 + 2y cos (ϕ(xi)) ,

where the “fugacity” yo = exp{−βEo}. The last step is valid for yo � 1, which, as we shall

see, is the relevant regime near the KT transition.

Using the fact that in Fourier space Vc(k) = 1/k2, in the continuum limit we can write

V −1
c (x− x′) −→ −δ(x− x′)∇2,

and we find the partition function of the Sine-Gordon (SG) model

Zvort =

∫
Dϕ(x) exp

{
− 1

2g̃

∫
dx (∇ϕ(x))2 + λ

∫
dx cos ϕ(x)

}
,

where g̃ = 4π2/g, and λ = 2yo/a
2 (a is the lattice spacing). Note that the high temperature

phase of the SG model (g∗ � 1) corresponds to the low temperature phase of the Coulomb
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gas (CG) model. This is an example of duality. One can say that the SG model is dual to

the CG model.

Before we move on to discussing the Sine-Gordon model, it is interesting to interpret the

field ϕ(xi) in terms of the original Coulomb gas model. Since it is a Hubbard-Stratonovich

field corresponding to the charge density, the field ϕ(xi) physically represents the electro-

static potential at site xi that is produced by all the other charges (vortices). The bare

propagator for this field is g̃/k2, i.e. it has the form of the bare Coulomb potential between

the charges. The situation is completely analogous to electrostatics, where the exchange of

photons “mediates” the Coulomb interaction between charges.

Surface Roughening

The Sine-Gordon model also describes the so-called “surface roughening” problem. A

good example is adsorption of hydrogen gas on a surface of silicon.

FIG. 1: Computer simulation results for the ”solid-on-solid” model, which is a lattice version of

the Sine-Gordon theory. As the temperature is increased, large height fluctuations of the adsorbed

layers emerge, and the surface becomes ”rough”.

Due to surface tension, at low temperature the adsorbed gas tends to form smooth layers
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of height h. Because of the atomic structure of the gas, the preferred average coverage tends

to be an integer multiple of the monatomic layer thickness d, i.e. h ≈ nd. In our language,

ϕ = 2πh/d, so that the cosine term describes the preferred coverage states, and the surface

tension of the first (gradient) term is σ = π/2dg̃.

Even before we do detailed calculations, it is interesting to “guess” the result, based

on the analogy with the Coulomb gas problem. In the low temperature phase of the CG

(i.e. the height temperature phase of the SG model), we expect vortices to be bound and

screening is absent. The Coulomb potential then reduces to its bare form, corresponding to

y = 0 (no vortices). In this case, we have a free elastic theory in d=2T, and the fluctuations

of the surface height 〈
h2(x)

〉
∼

∫
dk

k2
∼ ln(L/a),

i.e. huge fluctuations are found. The surface is rough. In the opposite limit of high tem-

peratures for the CG (i.e. low T for the SG model), there are free vortices, and thus the

Coulomb interaction is screened. The propagator for the ϕ-field (which corresponds to the

screened Coulomb potential) is now “massive”, giving〈
h2(x)

〉
∼

∫
dk

k2
o + k2

∼ const.

The surface fluctuations are now suppressed, and the surface is smooth.

Renormalization of the Sine-Gordon model

To learn more about the phase transition, we need to perform an explicit RG calculation.

The good news about the SG model is that we can do so using the standard Wilson RG

momentum shell approach. Since this approach is already familiar, we only outline the main

steps.

1) We treat the Gaussian part of the Action

So =
1

2g̃

∫
dx (∇ϕ(x))2

as the reference system, and treat

Sλ = −λ

∫
dx cos ϕ(x)

as a perturbation. This us a valid approach, since we shall see that λ remains infinitesimally

small near the transition (i.e. the RG fixed point is at λ = 0).
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2) As usual, we break up the fields into long wavelength and short wavelength components

ϕ(k) = ϕlong(k) + ϕshort(k),

and then we integrate out ϕshort(k) through a cumulant expansion in the interaction Sλ. To

lowest order, the renormalized Action takes the form

S̃[ϕlong] = S̃o[ϕlong] + δS̃[ϕlong],

with

δS̃[ϕlong] = 〈Sλ[ϕlong + ϕshort]〉So[ϕshort]
+ O(λ2).

To get the full RG description, we need to actually include both first and second order terms

in λ, but we will only do the first term here as an illustration, and just quote the result of

the full calculation.

Explicitly, the first order term is

δS̃(1)[ϕlong] = 〈Sλ[ϕlong + ϕshort]〉So[ϕshort]

= −λ

∫
dx 〈cos [ϕlong(x) + ϕshort(x)]〉So[ϕshort]

= −λ

2
Re

∫
dx 〈exp [iϕlong(x) + iϕshort(x)]〉So[ϕshort]

= −λ

∫
dx cos (ϕlong(x)) exp

{
−1

2

〈
ϕ2

short(x)
〉}

.

Since

〈ϕ〉2short (x) =
g̃

2π

∫ Λ

Λ/b

dk

k2
=

g̃

2π
ln b,

we find that the Action preserves its form under renormalization, while the coupling constant

λ is rescaled as

λ −→ b−eg/4πλ.

3) The last step, as usual, is to restore the old ultraviolet cutoff by length rescaling

Λ/b −→ Λ. Note that the usual field renormalization ϕlong(x) −→ b1−d/2ϕ(x), which leaves

the Gaussian part of the same form as before, in d = 2 cancels out. However, the λ-term

picks up (similarly as the r-term in the ϕ4 theory) another factor of b2, due to the rescaling

of the integration measure d2k. Finally

λ(b) = b2−eg/4πλ,
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or in differential form (b = e`)
dλ

d`
=

(
2− g̃

4π

)
λ.

As we can see from this equation, the nonlinear coupling λ −→ 0 for g̃ > g̃∗. In this high

temperature phase of the surface roughening (SG) model, the behavior reduces to that of a

free massless theory. In this regime, the surface height fluctuations

〈
h2(x)

〉
∼ Go(x = 0) =

∫
dk

(2π)2

g̃

k2
∼ ln(L/a),

and the surface is “rough”, as we predicted from the Coulomb gas analogy. In in the opposite

low temperature ( g̃ < g̃∗) limit, λ grows, and the behavior is dominated by the nonlinear

term. The field ϕ(x) ≈ ϕn = 2πn, i.e. the surface height h ≈ nd. The field is “locked” near

one of the minima of the periodic potential. To calculate the fluctuations (which are small),

we can now expand the nonlinear term

cos ϕ(x) ≈ 1− 1

2
ϕ2(x),

and the Action takes the form

S[ϕ(x) ≈ 1

2g̃

∫
dx

[
(∇ϕ(x))2 + λϕ2(x)

]
+ O(ϕ4).

The propagator is now “massive”

G(k) ≈ g̃

λ + k2
,

and the height fluctuations

〈
h2(x)

〉
∼ G(x = 0) =

∫
dk

(2π)2

g̃

λ + k2
∼ ln λ

are finite, and the surface is “smooth”.

To actually calculate the renormalized value of λ as a function of temperature, we need to

examine the renormalization of the coupling constant g̃ as well. To do this, the calculation

has to be extended to O(λ2). As in the case of the φ4 theory, we evaluate the renormalized

couplings by keeping only the appropriate lowest order terms in the external momenta,

since terms with extra powers of the momentum prove irrelevant by power counting. One

finds that the RG equation for λ acquires a correction of order λ2, but this term proves
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subleading near the fixed point, and can be ignored. However, g̃ now acquires a nontrivial

renormalization that contributes to leading order, which takes the form

d

d`
g̃−1 =

π

4
a8λ2.

We will do this in the next lecture, where we perform the full analysis of the Kosterlitz RG

equations. Since in real space the propagator is G(x) ∼ exp−{|x| /ξ}, with ξ = λ−1/2, we

really need to calculate the temperature-dependent correlation length ξ.


