
Van der Waals Equation

The Van der Waals equation was a first successful description of thermo-

dynamic phase transitions as originally developed for the liquid-gas transition.

Although derived in a somewhat ad-hoc fashion, it is just as valid and consistent

as any other mean-field formulation. It succeeded it capturing the main rough

qualitative features of first and second order phase transitions, and describes well

most experimental features everywhere - except very close to the critical point.

Heuristic derivation

Van der Waals had the idea to start with the equation of state for an ideal gas, and then

modify it to account for the interactions between molecules. For an ideal has

p =
T

v
,

where (as usual) we use energy units such that kB = 1, and introduce the inverse density,

i.e. volume per particle n−1 = v = V/N .
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Interaction potentials between particles in the liquid typically have a steep short-range

repulsive (core) potential that keeps the atoms apart. This introduces an excluded volume

per particle which is a constant b proportional to the volume of the particle itself. Thus, we
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may want to replace v → v − b. In addition, in order to get a liquid-gas phase transition,

particles must attract each other by a weaker by a longer range attraction (a typical example

is the Lennard-Jones potential as shown in the figure)This attraction would lower the energy

(and thus the free energy) by an amount inversely proportional to the volume. The pressure

p = −∂F
∂V

would then be reduced by a factor ∼ V −2, and we can write

p =
T

v − b
− a

v2
.

This is the famous Van der Waals equation. As we can see, the entire family of curves

p = p(V, T ) has only two adjustable parameters a and b that can be fitted to experiments.

This important observation is out first encounter of universality at work. Here it seems

as a result of rather arbitrary assumptions. Later, when we develop the Landau formulation

and the renormalization group ideas, we will see that this result is very general and has a

simple and robust origin.
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We can rewrite it as

v3 − (b +
T

p
)v2 +

a

p
v − ab

p
= 0.

As we can see, for given pressure p this is a cubic equation in v, hence it has the solutions.

Two of these roots correspond to the two stable thermodynamic states at the first order

transition - the liquid and the gas. The third root is a thermodynamically unstable solution.

This can be seen by observing that at the ”middle” solution the p(v) curve has negative

slope, corresponding to negative compressibility κT = −V −1∂V /∂p (which has to be positive
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in equilibrium). Historically, the ambiguities on how to interpret the Van der Waals equation

within the coexistence region have been first elucidated using a thermodynamic argument

using the so-called Maxwell construction (yes, by the EM guy!). However, this behavior is

physically much simpler to understand within the more general Landau formulation that we

will explore shortly.

As T increases, at some critical temperature Tc the three roots merge into one - we reach

the critical point where the liquid and the gas become indistinguishable. The equation then

takes the form

(v − vc)
3 = v3 − 3v2vc + 3vv2

c − v3
c = 0.

By comparing this with the above expression, we get expressions determining the critical

values vc, pc, and Tc

3vc = b +
Tc

pc

; 3v2
c =

a

pc

; v3
c =

ab

pc

,

or

vc = 3b; pc = a/27b2; Tc = 8a/27b2.

Law of Corresponding States

Now we introduce our first scaling expression, as follows. If we scale v, p, and T in

terms of their critical values, we can write the Van der Waals equation in its universal

form (
p

pc

+ 3
(vc

v

)2
) (

3
v

vc

− 1

)
= 8

T

Tc

.

This means that if we can determine the parameters of the critical point for different liquids,

and then plot them in such a scaling form, isotherms corresponding to the given scaled

temperature T/Tc but for many different materials would collapse on a single curve! This

is the law of corresponding states. This predicts, for example, that the quantity

pcvc

Tc

=
3

8
,

i.e. is an universal number. Experiments show this ratio to be close to 0.3 for many fluids,

in surprising agreement with such a simple theory.
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Critical behavior

Once one knows the equation of state it is easy to calculate all thermodynamic quantities.

We will not elaborate this here, as similar computations will be done in more detail when we

explore the Weiss mean-field theory for magnetism and the more general Landau formulation.

It is possible to show (Homework # 2) that within this theory CV remains finite (critical

exponent α = 0) at the critical point, while

Cp ∼ κT ∼ (T − Tc)
−1.

Thus the critical exponent γ = 1. Similarly if we define the reduced temperature

t =
T − Tc

Tc

; δv =
v − vc

vc

,

once finds that

δv ∼ t1/2,

i.e. the critical exponents β = 1. As we will see, identical exponents are found within any

mean-field formulation. This is our second example of universality.

Finally, a well-known relation in elementary Statistical Mechanics relates the compress-

ibility to the density fluctuations

〈
N2

〉
− 〈N〉2 = Tn2V κT .

As we can see, this indicates large density fluctuations near the critical point, in agreement

with the phenomenon of critical opalescence.


