
Vortices and the Berezinskii-Kosterlitz-Thouless Transition

In the 2d XY model, powerlaw correlations arise in the low temperature

region. This exotic phase is destroyed by vortices leading to the Berezinskii-

Kosterlitz-Thouless phase transition. We derive an effective Hamiltonian de-

scribing the thermodynamics of vortices, which takes the form of a two-

component Coulomb plasma.

Demise of the quasi long-range order

FIG. 1: Vortices created by air turbulence of a jet airplane.

The state of matter we have identified is as close as XY spins can get to order in d = 2, and

is called “quasi long-range order” (QLRO). We do not have broken symmetry or long range

correlations, but the correlations still decay very slowly with distance. We have a situation

which can be described as a critical state, especially having in mind that the coupling

constant g does not acquire any singular corrections at due to spin-wave interactions. It

does not flow, and in the RG language we have a ”line of fixed points”. The situation will
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become even more clear after we perform an appropriate RG analysis of the Berezinskii-

Kosterlitz-Thouless transition.

An interesting aspect of this scenario is that spin wave theory alone does not provide

a mechanism for the destruction of QLRO no matter how high is the temperature. This

possibility seems clearly at odds from what we expect, since at high temperatures (T � J),

we expect exponentially decaying correlations and short range order only. It is likely that

our analysis has overlooked something important. But what? To understand what is missing

let us think about the cost of different spin configurations. It is clear that at temperatures

T � J nearby spins should nearly line-up. Does this mean that we can have only spin wave

excitations? Not really.

FIG. 2: The “Big Red Spot” on Jupiter is a gigantic hurricane-like storm (votex), that lasts for

centuries, and is larger then the entire planet Earth.

As first realized by Berezinskii (1971), and then examined in detail by Kosterlitz and

Thouless (1973), in the d = 2 XY model we can identify vortex configurations where the

spins field is “smooth” everywhere except in a small region of space. These “topological

defects” have a property that once present in the system, they immediately eliminate the

slowly decaying correlations in the spin phase θ(x). We can be more precise and define the

“topological charge” of a vortex. To do this, we calculate the change of phase along a closed

loop enclosing the vortex core (see figure). Because all physical quantities (e.g. the energy)

is a periodic function of the spin phase θ with period 2π, the topological charge must be an
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integer n = 0,±1,±2 ...(this is very similar as in the quantization of the angular momentum

in elementary quantum mechanics).

FIG. 3: Vortex configurations characterized by topological charge n = +1 (left) and n = −1 (right).

Clearly, since the presence of a vortex ”rotates” the phase over large distances, randomly

placed vortices will completely “scramble” the phase, leading to short range order. In con-

trast, if a vortex and an antivortex pair are close to each other, the phase accumulated over

a loop enclosing both of them vanishes. Thus, vortices may or may not destroy QLRO, de-

pending how they are distributed in the system. But before we address this subtle question,

let us first calculate the energy cost to create an isolated vortex, in order to estimate their

concentration at finite temperature. To do this, for the moment we ignore the “background”

smooth spin-wave distortions, since they cannot play an important role in removing QLRO.

Consider a vortex with topological number n (see figure). For the spin configuration to

be single valued (just as the wavefunction phase in quantum mechanics), the accumulated

phase has to be an integer multiple of 2π as we go around the vortex. If we consider a

circular trajectory of radius R, then ∇θ(R) depends only on R, and we find∮
dθ =

∮
ds · ∇θ = 2πR∇θ(R) = 2πn.

We conclude that ∇θ(R) = n/R. We can immediately calculate the energy of an isolated

vortex

βEn = βEo
n +

1

2g

∫
dx (∇θ(x))2

= βEo
n +

n2

2g

∫ L

a

dR

R

= βEo
n +

n2π

g
ln(L/a).
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Clearly, the vortices with n = ±1 cost least energy, and will thus be most abundant. In

doing this calculation we have taken into account the fact that the continuum approximation

breaks down around the vortex center. To correct for this, we have added a (finite) correction

corresponding to the energy Eo
n of a vortex core.

Berezinskii-Kosterlitz-Thouless transition

We are now in a position to present a rough heuristic argument (Kosterlitz and Thouless,

1973) to estimate how many vortices are present at a given temperature, we have to compare

the energy cost for creating a vortex, from the entropy gain associated with many different

positions it can be placed.

The entropy of creating a single vortex, is

Sn = ln(# of possible positions of the vortex center)

= 2 ln(L/a).

Thus, the free energy of creating a n = ±1 vortex is

βF±1 = βEo
±1 +

π

g
ln(L/a)− 2 ln(L/a).

As we can see from this expression, the first term is a finite number, whereas the last two

both diverge logarithmically in the thermodynamic limit L −→ ∞. The entropy will win

and a finite concentration of free vortices will be created provided that

g > gc =
π

2
.

We therefore expect the vortices to proliferate above the Kosterlitz-Thouless temperature

TKT ∼ gc, and the QLRO state to be destroyed. At the critical point, the anomalous

dimension takes a universal value

η(TKT ) =
gc

2π
=

1

4
,

just as in the d = 2 Ising model (presumably a coincidence). These hand-waving predic-

tions about the vortex-unbinding BKT transition have been confirmed by more rigorous RG

calculations, which we examine in the following.
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Coulomb Gas Representation

The first step in developing a theory that describes the thermodynamics of vortices is

writing down an effective Hamiltonian describing their energetics. We need to determine the

energy of an arbitrary configuration containing a given number of vortices. The situation at

hand is very similar to the structure of the velocity field v(x) in turbulent fluids (see Figs.

1 and 2), where vortex configurations are superimposed on a smooth background, and we

can use the same mathematical tricks.

Very generally, an arbitrary vector field v(x) can be uniquely decomposed as a sum of

two terms, one being a smooth “potential” component, and the other describing “vortex”

configurations by writing

v(x) = E(x) + H(x),

with ∇×E(x) = 0, and ∇·H(x) = 0. Our choice of notation, where we used symbols E and

H for the respective components is not arbitrary. This was chosen to emphasize the close

mathematical analogy with yet another problem well known to us, that of static electric

and magnetic fields. As we recall from electrodynamics (or even classical mechanics), any

“irrotational” vector field satisfying ∇ × E(x) = 0 can be viewed as a “potential” field,

which can be represented as E(x) = −∇φ(x), since ∇ × ∇φ(x) ≡ 0. This component is

vorticity free, since by Stokes theorem∮
ds · E(x) =

∫
dS · ∇ × E(x) = 0.

In contrast, any “source-free” vector field satisfying ∇ · H(x) = 0 can be derived from a

vector potential as H(x) = ∇×A(x). This uniquely determines the potential provided we

fix a gauge (e.g. the Landau gauge ∇ ·A(x) = 0).

In our case, the votex-free component ∇θsw(x) corresponds to spin waves, and as such

plays no role at the BKT transition, which is dominated by vortices. We concentrate on the

component describing vortices, and calculate the corresponding “vortex” component of the

phase gradient, which can be represented as

∇θv(x) = ∇×A(x).

To calculate the vortex contribution to the free energy, we need to calculate A(x) for a given

configuration of vortices. In standard magnetostatics, the Maxwell’s equations require

∇×H(x) = J(x),
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where the “source” J(x) =4π
c
j(x), and j(x) is the electrical current density. In terms of the

vector potential

∇×H(x) = ∇× (∇×A(x)) = ∇·(∇A(x))−∇2A(x),

and using the Landau gauge, we find

−∇2A(x) = J(x).

Each component of A(x) satisfies a Poisson-like equation, and a formal solution takes the

form

A(x) =

∫
ddxG(x− x′)J(x′),

with G(x) being the Green’s function of the Laplace operator −∇2, with a Fourier transform

G(k) = 1/k2.

Our vector field ∇θv(x) lives in a two-dimensional space, and its components are also

confined to the XY plane. Therefore the vector potential points along the z-axis, i.e. A(x) =

A(x)ez, and the Green’s function is

G(x) =

∫
d2k

eikx

k2 =
1

2π
ln |x| .

In contrast to standard electrodynamics, the “source” J(x) is not arbitrary, but needs to

be determined from the positions of the vortices. To find it, consider an arbitrary loop C

enclosing vortices located at positions x = xi, with respective topological charges ni. The

total phase accumulated by going around this loop is

N∑
i=1

2πni =

∮
ds·∇θv(x) =

∫
C

dS · ∇×∇θv(x) =

∫
C

dS · ∇×(∇×A(x)) = −
∫

C

dS·∇2A(x).

We conclude that

−∇2A(x) = 2π
N∑

i=1

niδ(x− xi).

Thus the potential produced by these N vortices is

A(x) = −
N∑

i=1

ni ln |x− xi| .
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We can now obtain the energy of the vortices

βEvort =
1

2g

∫
dx (∇θv(x))2

=
1

2g

∫
dx (∇×A(x))2 =

1

2g

∫
dx (∇A(x))2 = − 1

2g

∫
dxA(x)∇2A(x)

= − 1

2g

∫
dx

[
−

N∑
i=1

ni ln |x− xi|

] [
−2π

N∑
i=1

niδ(x− xj)

]

= −π

g

N∑
i,j=1

ninj ln |xi−xj| .

In obtaining this result we performed an integration by part. The corresponding surface

term diverges with system size, unless only the configurations that respect charge neutrality

are retained ∑
i

ni = 0.

Note also that the the i = j term appears to lead to a divergence, which is simply an artefact

of the continuum approximation, and which should be replaced by a finite core energy of a

vortex. In addition, the vortices with ni = ±1 provide the dominant contribution near the

BKT transition, and to leading order only those are retained. Finally

βEvort =
∑

i

βEon
2
i −

2π

g

∑
i<j

ni ln(xi−xj) nj.

Mott Metal-insulator transition in the Coulomb gas

This expression for the energy of vortices in the XY model is identical to the Coulomb

energy of a two-dimensional system of charged particles with chemical potential Eo, which

are interacting through a two-dimensional Coulomb potential Vc(x) = 1
2π

ln |x|. As we can

see from this expression, vortices with equal “charge” repel each other, while those with

opposite charge attract. As a result, they tend to form vortex-antivortex pairs at low

temperatures, but dissociate at T > TKT .

Very similar processes take place in many different systems where pairs of opposite charges

bind at low temperature to form neutral atoms or molecules. An interesting example is the

structure of the mantle inside planet Jupiter, which is formed mostly of hydrogen. The outer

layer is formed of molecular hydrogen (H2 molecules), which is an insulating fluid. Deeper
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below the surface the pressure is so high that hydrogen molecules dissociate and one finds

metallic liquid hydrogen.

FIG. 4: Interior structure of planets Jupiter and Saturn. Because of large content of metallic liquid

hydroge, Jupiter has a huge magnetosphere.

This phase is actually one that contains the largest fraction of Jupiter’s mass. The two

phases do not differ by any broken symmetry. The only important difference is in the

conducting properties, i.e. in form of dielectric screening. In the metallic phase the effective

Coulomb potential is screened, i.e. takes the ”Yukawa” form

Veff (R) ∼ exp{−R/ξ},

where ξ is the screening (Debye) length. In the molecular (insulating) phase, there are no

free charges to do the screening, and the Coulomb potential remains long-ranged

Veff (R) ∼ 1/εR,

where ε is the dielectric constant of the molecular liquid, which is finite. Of course, since in

this three dimensional situation the interaction between charges is not logarithmic, the
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argument of Kosterlitz and Thouless does not apply, and one finds a first order phase

transition.

This behavior is very similar to that of vortices in the XY model. Note, though, that in

that case free vortices destroy phase correlations of the spin field, so the spin correlations

become short ranged. In contrast, at T < TKT , the vortices are bound in pairs, and the

spin correlations remain ”quasi long-ranged”, i.e. have powerlaw decay. This is an example

of duality, which we shall explore in more detail in the next lecture, when we discuss the

mapping of the XY model to the roughening problem and the Sine-Gordon model.

The structure of the Kosterlitz-Thouless phase transition can be established in detail by

performing a RG analysis of the Coulomb gas model, as was first done by Kosterlitz and

Thouless. When written in this form, the problem looks quite different then the field theories

we are used to, and it is not obvious how such a RG calculation can be done. Indeed, the

original calculation presented a real-space RG formulation that appears quite different then

the momentum shell approach of Wilson. This approach was based on a similar calculation

carried out earlier by Anderson, Yuval and Hamann (1971) for the Kondo problem, where

the same RG equations are found. We will not follow that rounte here. Instead, we will map

the XY model to the its dual Sine-Gordon model, where standard momentum shell RG can

be used to derive the same results.


