
Physics 5645

Quantum Mechanics A

Problem Set VI

Due: Tuesday, Oct 31, 2017

6.1 Consider a one-dimensional quantum particle in the ground state of an infinite square

well of width L. Suddenly, the well is expanded symmetrically to twice its size, leaving the

wave function undisturbed. What is the probability to find the particle in the ground state

of the new well?

6.2 In class we showed that the normalized position-space wave function for the nth energy

eigenstate of a one-dimensional quantum Harmonic oscillator can be expressed as (see also

Eq. 2.3.32 in Sakurai and Napolitano, pg. 92),
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(a) Construct ψ2(x).

(b) Sketch ψ0, ψ1, and ψ2.

(c) Verify that ψ0, ψ1, and ψ2 are all orthogonal to one another by direct integration.

6.3 Compute the uncertainty product 〈(∆x)2〉〈(∆p)2〉 for the nth energy eigenstate of a

one-dimensional quantum harmonic oscillator and verify that the uncertainty principle is

satisfied for all n.

6.4 Consider a one-dimensional quantum harmonic oscillator which, at time t = 0, is in the

state

|ψ(0)〉 =
1√
2
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(a) Working in the Schrödinger picture, find the time dependent state |ψ(t)〉 and compute

the time-dependent expectation values 〈x̂〉 = 〈ψ(t)|x̂|ψ(t)〉 and 〈p̂〉 = 〈ψ(t)|p̂|ψ(t)〉.

(b) Working in the Heisenberg picture, again compute the time-dependent expectation

values 〈x̂〉 = 〈ψ(0)|x̂(t)|ψ(0)〉 and 〈p̂〉 = 〈ψ(0)p̂(t)|ψ(0)〉 and verify that the result is

the same as that obtained in Part (a).

6.5 Harmonic Oscillator Coherent States.

In Problem 6.2 you found that the ground state of the harmonic oscillator minimizes the

uncertainty product with 〈(∆x)2〉〈(∆p)2〉 = ~2/4, but for all of the excited states this

product is greater than ~2/4. There are, however, certain linear combinations of energy

eigenstates, known as coherent states, for which the uncertainty product is minimized.

A coherent state is defined to be an eigenstate of the (non-Hermitian) lowering operator,

a|α〉 = α|α〉,

where α can be any complex number. (Since a is not Hermitian its eigenvalues are not

required to be real.)

(a) Calculate 〈x̂〉, 〈x̂2〉, 〈p̂〉, and 〈p̂2〉 in the state |α〉. In doing this do not assume α is

real. Compute 〈(∆x)2〉 and 〈(∆p)2〉 and show that that the uncertainty product is

〈(∆x)2〉〈(∆p)2〉 = ~2/4, and hence is minimized.

(b) Consider the expansion of |α〉 in the energy basis,

|α〉 =
∞∑
n=0

cn|n〉.

Show that the expansion coefficients are cn = αn
√
n!
c0.

(c) By normalizing |α〉 show that c0 = e−|α|
2/2.

It follows from (b) and (c) that the probability to find the system in the state |n〉 is

Pn = |cn|2 =
(|α|2)n
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,

which has the form of a Poisson distribution.

(d) Consider the limit of large quantum number n and, using Stirling’s approximation,

determine the most probable value of n (i.e., the value of n which maximizes Pn).
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(e) Now consider the time evolution of this state in the Schrödinger picture. Show that

the time-dependent state |α(t)〉 remains an eigenstate of a but now with a time-dependent

eigenvalue,

a|α(t)〉 = α(t)|α(t)〉; α(t) = e−iωtα(0).

It follows that coherent states stay coherent states and so continue to have the minimal

uncertainty product.

(f) Compute the commutator [a, T (l)] where T (l) = e−ip̂l is the translation operator. Using

your result show that T (l)|0〉 (i.e. the ground state translated through distance l) is an

eigenstate of a (and hence a coherent state), and determine the corresponding eigenvalue.

(g) (Optional: Inspired by the Oct. 26 colloquium — just for fun!) For a given α 6= 0,

consider the following superposition of coherent states,

|ψqubit〉 = c1 (|α〉+ | − α〉) + c2 (|iα〉+ | − iα〉) . (1)

(This is the wave function for the “protected qubit” described in the colloquium if we

interpret the n quantum number as the number of photons in a cavity. The “encoded”

qubit is in the state c1|0〉+ c2|1〉.)

Show that if you apply the lowering operator once to this state (corresponding to one

photon escaping the cavity) the state changes. But if you apply the lowering operator four

times (corresponding to four photons escaping the cavity) the state is unchanged.
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