Physics 5645
Quantum Mechanics A
Problem Set X
Due: Friday, Dec 7, 2018

10.1 Commutation relations.
Using the fundamental commutation relations [, 7;] = [p;, p;| = 0, and [r, p;] = ihd;;, show

that [L, fQ] =0 and [E,ﬁQ] = 0, where 2 = 22 + 2 + 22 and p? = p3 + pp, + P
10.2 Finite spherical well.
A three-dimensional quantum particle of mass m is confined by the potential

-V r<a,
Vi =4
0 r>a

where V > 0.
(a) Show that the [ = 0 bound states occur when,

ka cot ka = —pa,

where k£ = 4/ w and p = 4/ ’thE. (Note the similarity of this problem to

Problem 6.2.)

This potential provides a crude approximation to the potential energy of the deuteron
(proton-neutron bound state) as a function of proton-neutron separation, r. In what follows
take m to be the proton-neutron reduced mass (m = mym,/(m, + m,) ~ 470 MeV/c?),
a to be the approximate size of the deuteron measured from scattering experiments, a =
1.5 fm, and use the fact that the binding energy of the deuteron, determined from mass

measurements, is W = 2.23 Mev.

(b) Determine the value of V4 in MeV.

(c) Determine whether or not the deuteron has any excited but still bound [ = 0 states.



10.3 Three-dimensional isotropic harmonic oscillator.

Consider a quantum particle of mass m moving in the presence of a three-dimensional har-
monic potential V (r) = %muﬂrz. Since the potential is spherically symmetric, we know that
energy eigenstates can be taken to be simultaneous eigenstates of [? and L,. The position-

space wave functions of these eigenstates will then have the form i (r, 0, ¢) = R(r)Y;™(6, ¢).

(a) Write down the radial equation for the function u(r) = rR(r).

(b) Introduce the dimensionless radial coordinate p = /ZZr and let e = 22 where E is

the energy of the state and show that the radial equation can be written,

d? , L(l+1) -
(—d—p2+p+ ! )u<p>—eu<p>. W

It can be shown that the solutions to (1) have the form u(p) = e=#*/2v(p) where

o0

v(p) = M (ao + azp® + asp + ) =T Y agp”.
q=0,2,4,---

(Feel free to show this yourself, but for purposes of this problem it is OK to just assume it.)

(¢) Show that if u(p) = e ?/2v(p) the radial equation (1) implies that v(p) satisfies the

following equation,

v =0. (2)

(d) Plug in the power series expression for v(p) into (2) and obtain a recursion relation for

the coefficients a,. Determine the quantized values of £ for which the series truncates.

(e) Construct the normalized ground state wave function (with [ = 0 and £ = 3hw) and
the three first excited state wave functions (with [ =1, m = —1,0,1 and E = 2hw)

for this particle.

10.4 Consider a He™ ion which consists of a single electron orbiting a nucleus of charge +2e.
If the nucleus of this atom absorbs a positron the nuclear charge will suddenly become +3e
(i.e. the ion will become a Li** ion). Assume the electron in the Helium ion was in its

ground state before the positron absorption.
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(a) What is the probability that, immediately after the positron absorption, the electron

will be found in the ground state (n = 1) of the Li** ion?

(b) What is the probability that, immediately after the positron absorption, the electron

will be found in each of the four degenerate n = 2 excited states of the Li>* ion?

You may use the sudden approximation which assumes that the system remains in the

ground state of the Hydrogen-like ion immediately after absorbing the positron.

10.5 Virial Theorem.

Consider a three-dimensional quantum particle with Hamiltonian,

>
b ;

H = .
5 T V()

~
—

(a) Obtain the Heisenberg equation of motion for the operator ) = 7P

(b) Use your result from Part (a) and the fact that in a stationary state (€2) is time-
independent to show that if |¢) is an eigenstate of H then

(ATI) = (7 TV (1),

where

22
P
2m

is the kinetic energy operator. This is the quantum-mechanical version of the virial theorem.

(¢) Apply your result from Part (b) to the case of a spherically symmetric potential of the

form with V(r) = kr® and show that in this case the virial theorem states that,

o
() = S(v), 3)
in any energy eigenstate.

(d) Verify that (3) holds for the ground state of the isotropic harmonic oscillator (o = 2)
and the ground state of the hydrogen atom (o = —1).



