Physics 5645

Quantum Mechanics A
 Problem Set II

Due: Tuesday, Sep 18, 2018
2.1 Problem 1.4, Sakurai and Napolitano, Pg. 59.
2.2 Problem 1.11, Sakurai and Napolitano, Pg. 60.
2.3 Problem 1.12, Sakurai and Napolitano, Pg. 60.
2.4 As an example of a system described described by a three-dimensional Hilbert space consider the case of a spin-1 particle. For such a particle the matrix representations of S_{x}, S_{y}, and S_{z} in the S_{z} basis are,

$$
S_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad S_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad S_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(a) Obtain the eigenvalues and corresponding eigenvectors of S_{x} and S_{y} in the S_{z} basis.
(b) Consider a system prepared in the state

$$
|\psi\rangle=A(|+\rangle+i|0\rangle+|-\rangle)
$$

where $S_{z}|+\rangle=\hbar|+\rangle, S_{z}|0\rangle=0|0\rangle, S_{z}|-\rangle=-\hbar|-\rangle$, and A is a normalization constant. Determine the probabilities for all possible measurement results of S_{x} for this state.
(c) Assume that the result of the measurement made in (b) is $S_{x}=+\hbar$, and that immediately after this measurement S_{y} is measured. Determine the probabilities for all possible results of this S_{y} measurement.
(d) Now assume the system is prepared in a state with $S_{z}=+\hbar$. Determine the expectation values $\left\langle S_{x}\right\rangle,\left\langle S_{y}\right\rangle,\left\langle S_{x}^{2}\right\rangle$, and $\left\langle S_{y}^{2}\right\rangle$ for this state. Obtain the uncertainties $\left\langle\left(\Delta S_{x}\right)^{2}\right\rangle=$ $\left\langle S_{x}^{2}\right\rangle-\left\langle S_{x}\right\rangle^{2}$ and $\left\langle\left(\Delta S_{y}\right)^{2}\right\rangle=\left\langle S_{y}^{2}\right\rangle-\left\langle S_{y}\right\rangle^{2}$ and verify that your result satisfies the generalized uncertainty relation.
2.5 Problem 1.19, Sakurai and Napolitano, Pg. 61.
2.6 Problem 1.26, Sakurai and Napolitano, Pg. 63.

