Physics 5645 Quantum Mechanics A Problem Set IV

Due: Tuesday, Oct 9, 2018

4.1 Show that if the position-space wave function for a particle, $\psi(x) = \langle x | \psi \rangle$, is real valued then the expectation value of the momentum operator in that state is $\langle \hat{p} \rangle = 0$. (Hint: Show that the probabilities to measure momenta of +p and -p are equal.) Also show that multiplying $\psi(x)$ by a constant, even if complex, does not change this result. (It better not, since the states $|\psi\rangle$ and $c|\psi\rangle$ are physically equivalent.)

4.2 Problem 1.27, Sakurai and Napolitano, Pg. 63.

4.3 Problem 1.32 Part (b), Sakurai and Napolitano, Pg. 65.

4.4 A one-dimensional particle is in the state $|\psi\rangle = \int \psi(x) |x\rangle dx$ where $\psi(x) = \langle x|\psi\rangle$, the position-space wave function, is given by

$$\psi(x) = \begin{cases} A & -a \le x \le a, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find A so that $|\psi\rangle$ is normalized and compute the momentum-space wave function for this state, $\tilde{\psi}(p) = \langle p | \psi \rangle$.
- (b) If an experiment were performed to measure the momentum p of the particle in this state, what is the probability that the result would be such that $|p| \ge \hbar/a$? [To answer this you may need to do an integral numerically.]
- 4.5 Problem 2.2, Sakurai and Napolitano, Pg. 148.

4.6 Consider the precession of the spin of an electron in a uniform magnetic field $\vec{B} = B\hat{k}$ for which the Hamiltonian is

$$H = -\frac{eB}{mc}S_z = \omega S_z,$$

where $\omega = \frac{|e|B}{mc}$.

At time t = 0 the electron spin is in the state,

$$|\psi(0)\rangle = \cos\frac{\theta}{2}|+\rangle + \sin\frac{\theta}{2}|-\rangle,$$

(i.e., an eigenstate of the operator $\hat{\mathbf{n}} \cdot \mathbf{S}$ with eigenvalue $+\hbar/2$ where $\hat{\mathbf{n}}$ is in the xz plane and makes an angle θ with the z axis.) In what follows work within the Schrödinger picture.

- (a) Obtain the time dependent state $|\psi(t)\rangle$.
- (b) Find the probability for finding the electron in the $S_x = \hbar/2$ state as a function of time.
- (c) Obtain the expectation values of S_x , S_y , and S_z as a function of time. Describe the time evolution of the vector $\langle \mathbf{S} \rangle = \langle \psi(t) | \mathbf{S} | \psi(t) \rangle$.
- 4.7 Time Evolution of free particle wave packet (Schrödinger picture). Consider the motion of a free particle in one-dimension with Hamiltonian

$$H = \frac{\hat{p}^2}{2m}.$$

At time t = 0 the particle is in a state $|\psi(0)\rangle$ with position-space wave function

$$\langle x|\psi(0)\rangle = \frac{1}{\pi^{1/4}\sqrt{d}} \exp^{-x^2/(2d^2)} e^{ikx}.$$

(a) Working in the Schrödinger picture, find the position space wave function at time t.
Answer:

$$\langle x|\psi(t)\rangle = \frac{1}{\pi^{1/4}\sqrt{d}} \frac{\exp^{-(x-v_g t)^2/\left[2d^2\left(1+i\frac{\hbar}{md^2}t\right)\right]}}{\sqrt{1+i\frac{\hbar}{md^2}t}} e^{ik(x-v_p t)},\tag{1}$$

where $v_g = \hbar k/m$ is the group velocity, and $v_p = \hbar k/(2m)$ is the phase velocity.

(b) Specializing to the case k = 0, compute the expectation values $\langle \hat{x} \rangle$, $\langle \hat{x}^2 \rangle$, $\langle \hat{p} \rangle$, and $\langle \hat{p}^2 \rangle$. Determine $\langle (\Delta x)^2 \rangle$ and $\langle (\Delta p)^2 \rangle$ as a function of time and verify that the uncertainty principle always holds.