Physics 5645
 Quantum Mechanics A Problem Set IV
 Due: Tuesday, Oct 9, 2018

4.1 Show that if the position-space wave function for a particle, $\psi(x)=\langle x \mid \psi\rangle$, is real valued then the expectation value of the momentum operator in that state is $\langle\hat{p}\rangle=0$. (Hint: Show that the probabilities to measure momenta of $+p$ and $-p$ are equal.) Also show that multiplying $\psi(x)$ by a constant, even if complex, does not change this result. (It better not, since the states $|\psi\rangle$ and $c|\psi\rangle$ are physically equivalent.)
4.2 Problem 1.27, Sakurai and Napolitano, Pg. 63.
4.3 Problem 1.32 Part (b), Sakurai and Napolitano, Pg. 65.
4.4 A one-dimensional particle is in the state $|\psi\rangle=\int \psi(x)|x\rangle d x$ where $\psi(x)=\langle x \mid \psi\rangle$, the position-space wave function, is given by

$$
\psi(x)=\left\{\begin{array}{c}
A-a \leq x \leq a \\
0 \quad \text { otherwise }
\end{array}\right.
$$

(a) Find A so that $|\psi\rangle$ is normalized and compute the momentum-space wave function for this state, $\tilde{\psi}(p)=\langle p \mid \psi\rangle$.
(b) If an experiment were performed to measure the momentum p of the particle in this state, what is the probability that the result would be such that $|p| \geq \hbar / a$? [To answer this you may need to do an integral numerically.]
4.5 Problem 2.2, Sakurai and Napolitano, Pg. 148.
4.6 Consider the precession of the spin of an electron in a uniform magnetic field $\vec{B}=B \hat{k}$ for which the Hamiltonian is

$$
H=-\frac{e B}{m c} S_{z}=\omega S_{z}
$$

where $\omega=\frac{|e| B}{m c}$.

At time $t=0$ the electron spin is in the state,

$$
|\psi(0)\rangle=\cos \frac{\theta}{2}|+\rangle+\sin \frac{\theta}{2}|-\rangle,
$$

(i.e., an eigenstate of the operator $\hat{\mathbf{n}} \cdot \mathbf{S}$ with eigenvalue $+\hbar / 2$ where $\hat{\mathbf{n}}$ is in the $x z$ plane and makes an angle θ with the z axis.) In what follows work within the Schrödinger picture.
(a) Obtain the time dependent state $|\psi(t)\rangle$.
(b) Find the probability for finding the electron in the $S_{x}=\hbar / 2$ state as a function of time.
(c) Obtain the expectation values of S_{x}, S_{y}, and S_{z} as a function of time. Describe the time evolution of the vector $\langle\mathbf{S}\rangle=\langle\psi(t)| \mathbf{S}|\psi(t)\rangle$.
4.7 Time Evolution of free particle wave packet (Schrödinger picture).

Consider the motion of a free particle in one-dimension with Hamiltonian

$$
H=\frac{\hat{p}^{2}}{2 m} .
$$

At time $t=0$ the particle is in a state $|\psi(0)\rangle$ with position-space wave function

$$
\langle x \mid \psi(0)\rangle=\frac{1}{\pi^{1 / 4} \sqrt{d}} \exp ^{-x^{2} /\left(2 d^{2}\right)} e^{i k x}
$$

(a) Working in the Schrödinger picture, find the position space wave function at time t. Answer:

$$
\begin{equation*}
\langle x \mid \psi(t)\rangle=\frac{1}{\pi^{1 / 4} \sqrt{d}} \frac{\exp ^{-\left(x-v_{g} t\right)^{2} /\left[2 d^{2}\left(1+i \frac{\hbar}{m d^{2}} t\right)\right]}}{\sqrt{1+i \frac{\hbar}{m d^{2}} t}} e^{i k\left(x-v_{p} t\right)} \tag{1}
\end{equation*}
$$

where $v_{g}=\hbar k / m$ is the group velocity, and $v_{p}=\hbar k /(2 m)$ is the phase velocity.
(b) Specializing to the case $k=0$, compute the expectation values $\langle\hat{x}\rangle,\left\langle\hat{x}^{2}\right\rangle,\langle\hat{p}\rangle$, and $\left\langle\hat{p}^{2}\right\rangle$. Determine $\left\langle(\Delta x)^{2}\right\rangle$ and $\left\langle(\Delta p)^{2}\right\rangle$ as a function of time and verify that the uncertainty principle always holds.

