4.1 Show that if the position-space wave function for a particle, \(\psi(x) = \langle x|\psi \rangle \), is real valued then the expectation value of the momentum operator in that state is \(\langle \hat{p} \rangle = 0 \). (Hint: Show that the probabilities to measure momenta of \(+p \) and \(-p \) are equal.) Also show that multiplying \(\psi(x) \) by a constant, even if complex, does not change this result. (It better not, since the states \(|\psi\rangle \) and \(c|\psi\rangle \) are physically equivalent.)

4.2 Problem 1.27, Sakurai and Napolitano, Pg. 63.

4.3 Problem 1.32 Part (b), Sakurai and Napolitano, Pg. 65.

4.4 A one-dimensional particle is in the state \(|\psi\rangle = \int \psi(x)|x\rangle dx \) where \(\psi(x) = \langle x|\psi \rangle \), the position-space wave function, is given by

\[
\psi(x) = \begin{cases}
A & -a \leq x \leq a, \\
0 & \text{otherwise}.
\end{cases}
\]

(a) Find \(A \) so that \(|\psi\rangle \) is normalized and compute the momentum-space wave function for this state, \(\tilde{\psi}(p) = \langle p|\psi \rangle \).

(b) If an experiment were performed to measure the momentum \(p \) of the particle in this state, what is the probability that the result would be such that \(|p| \geq \hbar/a \)? [To answer this you may need to do an integral numerically.]

4.5 Problem 2.2, Sakurai and Napolitano, Pg. 148.

4.6 Consider the precession of the spin of an electron in a uniform magnetic field \(\vec{B} = B\hat{k} \) for which the Hamiltonian is

\[
H = -\frac{eB}{mc}S_z = \omega S_z,
\]

where \(\omega = \frac{|e|B}{mc} \).
At time $t = 0$ the electron spin is in the state,

$$|\psi(0)\rangle = \cos \frac{\theta}{2} |+\rangle + \sin \frac{\theta}{2} |-\rangle,$$

(i.e., an eigenstate of the operator $\hat{n} \cdot \mathbf{S}$ with eigenvalue $+\hbar/2$ where \hat{n} is in the xz plane and makes an angle θ with the z axis.) In what follows work within the Schrödinger picture.

(a) Obtain the time dependent state $|\psi(t)\rangle$.

(b) Find the probability for finding the electron in the $S_x = \hbar/2$ state as a function of time.

(c) Obtain the expectation values of S_x, S_y, and S_z as a function of time. Describe the time evolution of the vector $\langle \mathbf{S} \rangle = \langle \psi(t)|\mathbf{S}|\psi(t)\rangle$.

4.7 Time Evolution of free particle wave packet (Schrödinger picture).

Consider the motion of a free particle in one-dimension with Hamiltonian

$$H = \frac{\hat{p}^2}{2m}.$$

At time $t = 0$ the particle is in a state $|\psi(0)\rangle$ with position-space wave function

$$\langle x|\psi(0)\rangle = \frac{1}{\pi^{1/4}\sqrt{d}} \exp^{-x^2/(2d^2)} e^{ikx}.$$

(a) Working in the Schrödinger picture, find the position space wave function at time t.

Answer:

$$\langle x|\psi(t)\rangle = \frac{1}{\pi^{1/4}\sqrt{d}} \frac{\exp^{-(x-v_gt)^2/[2d^2(1+i\hbar/m_d^2t)]}}{\sqrt{1 + i\hbar/m_d^2t}} e^{i(k-x-v_pt)}, \quad (1)$$

where $v_g = \hbar k/m$ is the group velocity, and $v_p = \hbar k/(2m)$ is the phase velocity.

(b) Specializing to the case $k = 0$, compute the expectation values $\langle \hat{x} \rangle$, $\langle \hat{x}^2 \rangle$, $\langle \hat{p} \rangle$, and $\langle \hat{p}^2 \rangle$. Determine $\langle (\Delta x)^2 \rangle$ and $\langle (\Delta p)^2 \rangle$ as a function of time and verify that the uncertainty principle always holds.