Physics 5645

Quantum Mechanics A

Problem Set IX
Due: Thursday, Nov 29, 2018 (DEADLINE EXTEDNED TO TUESDAY, DEC. 4)
9.1 Constructing spherical harmonics.
(a) Use the fact that $L_{z}|11\rangle=\hbar|11\rangle$ and $L_{+}|11\rangle=0$ and the position representations of L_{+}and L_{z},

$$
\begin{aligned}
\langle\vec{r}| L_{+}|\psi\rangle & =\hbar e^{i \phi}\left(\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \phi}\right)\langle\vec{r} \mid \psi\rangle, \\
\langle\vec{r}| L_{z}|\psi\rangle & =\frac{\hbar}{i} \frac{\partial}{\partial \phi}\langle\vec{r} \mid \psi\rangle,
\end{aligned}
$$

to explicitly derive $Y_{1}^{1}(\theta, \phi)$. Normalize it by carrying out the appropriate spherical integral. To be consistent with the usual convention be sure to include the appropriate factor of $(-1)^{l}$.
(b) By repeatedly applying the lowering operator L_{-}using the property that $L_{-}|l, m\rangle=$ $\hbar \sqrt{(l+m)(l-m+1)}|l, m-1\rangle$ and the position representation of L_{-},

$$
\langle\vec{r}| L_{-}|\psi\rangle=-\hbar e^{-i \phi}\left(\frac{\partial}{\partial \theta}-i \cot \theta \frac{\partial}{\partial \phi}\right)\langle\vec{r} \mid \psi\rangle,
$$

obtain $Y_{1}^{0}(\theta, \phi)$ and $Y_{1}^{-1}(\theta, \phi)$. Compare your results with the familiar expressions,

$$
Y_{1}^{0}(\theta, \phi)=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta, \quad Y_{1}^{ \pm 1}(\theta, \phi)=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{ \pm i \phi} .
$$

9.2 Parity and angular momentum.

Prove that under the parity operation $\vec{r} \rightarrow-\vec{r}$,

$$
Y_{l}^{m} \rightarrow(-1)^{l} Y_{l}^{m} .
$$

Hint: Show that this is true for Y_{l}^{l}, for which you have a simple explicit form, and then verify that applying L_{-}does not alter the parity.
9.3 Spin-1 rotation matrix.

Recall that the matrix representation of J_{x} for a spin-1 particle is,

$$
J_{x}^{(1)}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(a) Compute the matrices $J_{x}^{(1)^{2}}$ and $J_{x}^{(1)^{3}}$. You should find that $J_{x}^{(1)^{3}}=\hbar^{2} J_{x}^{(1)}$.
(b) By Taylor expanding the exponential, and using the results of Part (a), show that the spin-1 matrix representation of the rotation operator for an x-axis rotation by angle $\phi, D(R(\phi \hat{i}))=e^{-i \frac{J_{x}}{\hbar} \phi}$, is

$$
e^{-i \frac{J_{x}^{(1)}}{\hbar} \phi}=\mathbb{1}-i \sin \phi\left(\frac{J_{x}^{(1)}}{\hbar}\right)+(\cos \phi-1)\left(\frac{J_{x}^{(1)}}{\hbar}\right)^{2} .
$$

9.4 Spherical harmonics in Cartesian coordinates.
(a) Show that the $l=1$ spherical harmonics (see 9.1) can be expressed in Cartesian coordinates as,

$$
Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{z}{r}, \quad Y_{1}^{ \pm 1}=\mp\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{x \pm i y}{2^{1 / 2} r}
$$

(b) Now consider a particle in a state for which the position-space wave function is,

$$
\psi(\vec{r})=A(x+y+2 i z) e^{-\alpha r}
$$

where A is a normalization constant. Using the result of Part (a), determine the probabilities for all possible results of an L_{z} measurement on this particle.
9.5 Rotating $Y_{l}^{m} \mathrm{~s}$.

Under a rotation through angle ϕ about the x-axis the x, y, and z components of the position vector of a particle transform as

$$
\begin{aligned}
& x \rightarrow x \\
& y \rightarrow y \cos \phi-z \sin \phi \\
& z \rightarrow z \cos \phi+y \sin \phi
\end{aligned}
$$

Thus, under this rotation, the spherical harmonic Y_{1}^{0} must transform as

$$
Y_{1}^{0}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{z}{r} \rightarrow\left(\frac{3}{4 \pi}\right)^{1 / 2} \frac{z \cos \phi-y \sin \phi}{r}
$$

(The difference in sign of the $y \sin \phi$ term is due to the fact that we are considering an active rotation.)
(a) Expand the rotated Y_{1}^{0} in terms of the unrotated Y_{1}^{1}, Y_{1}^{0}, and Y_{1}^{-1}.
(b) Compare your result with that obtained using the spin-1 matrix representation of the x-axis rotation operator found in 9.3. Hint: Apply the rotation matrix to the column vector

$$
\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

which corresponds to the state Y_{1}^{0}.
(c) Repeat Parts (a) and (b) for the rotated Y_{1}^{1} and Y_{1}^{-1}.
9.6 Spin-3/2 matrix representation of J_{x}.
(a) Using

$$
J_{ \pm}|j, m\rangle=\hbar \sqrt{(j \mp m)(j \pm m+1)}|j, m \pm 1\rangle, \quad \text { where } J_{ \pm}=J_{x} \pm i J_{y}
$$

determine $J_{x}^{(3 / 2)}$, the 4×4 matrix representation of J_{x} for $j=3 / 2$ in the J_{z} basis.
(b) Find the eigenvalues of $J_{x}^{(3 / 2)}$ and confirm that they are $-\frac{3}{2} \hbar,-\frac{1}{2} \hbar, \frac{1}{2} \hbar, \frac{3}{2} \hbar$.

