Physics 5645
Quantum Mechanics A
Problem Set IX
Due: Friday, Dec 6, 2019

10.1 Constructing spherical harmonics.

(a) Use the fact that L,|11) = A|11) and L, |11) = 0 and the position representations of
L. and L.,
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to explicitly derive Y (6, ¢). Normalize it by carrying out the appropriate spherical
integral. To be consistent with the usual convention be sure to include the appropriate

factor of (—1).

(b) By repeatedly applying the lowering operator L_ using the property that L_|l,m) =

hin/(L+m)(l —m +1)|l,m — 1) and the position representation of L_,
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obtain Y2(6, ¢) and Y; '(6, ¢). Compare your results with the familiar expressions,
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10.2 Parity and angular momentum.

Prove that under the parity operation ¥ — —7,
Y (—1)

Hint: Show that this is true for Y}, for which you have a simple explicit form, and then

verify that applying L_ does not alter the parity.



10.3 Spherical harmonics in Cartesian coordinates.

(a) Show that the [ = 1 spherical harmonics (see 10.1) can be expressed in Cartesian
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(b) Now consider a particle in a state for which the position-space wave function is,

coordinates as,

(1) = Az +y + 2iz)e” ",

where A is a normalization constant. Using the result of Part (a), determine the

probabilities for all possible results of an L, measurement on this particle.

10.4 Rotating Y;™s.
Under a rotation through angle ¢ about the z-axis the x, y, and z components of the position
vector of a particle transform as

r = x

Yy — Yycoso — zsin ¢

Z — zcos ¢+ ysin ¢

Thus, under this rotation, the spherical harmonic Y, must transform as
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(The difference in sign of the ysin ¢ term is due to the fact that we are considering an active

rotation.)

(a) Expand the rotated Y, in terms of the unrotated Y, Y, and Y;*.

(b) Compare your result with that obtained using the spin-1 matrix representation of the
x-axis rotation operator found in Problem 9.3. Hint: Apply the rotation matrix to

the column vector

which corresponds to the state Y.



¢) Repeat Parts (a) and (b) for the rotated Y;* and Y; '
(c) : :

10.5 Commutation relations.
Using the fundamental commutation relations [, 7;] = [p;, p;| = 0, and [r4, p;] = ihd;;, show

that [E, fAQ] =0 and [f/,ﬁQ] = 0, where 2 = 2 + 9% + 2% and P =p2 +ﬁ§ + p2.
10.6 Finite spherical well.
A three-dimensional quantum particle of mass m is confined by the potential

-V r <a,
Vi =4
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where V) > 0.
(a) Show that the [ = 0 bound states occur when,

ka cot ka = —pa,

where k = 4/ w and p = 4/ ’thnE. (Note the similarity of this problem to

Problem 6.2.)

This potential provides a crude approximation to the potential energy of the deuteron
(proton-neutron bound state) as a function of proton-neutron separation, r. In what follows
take m to be the proton-neutron reduced mass (m = mym,/(m, + m,) ~ 470 MeV/c?),
a to be the approximate size of the deuteron measured from scattering experiments, a =
1.5 fm, and use the fact that the binding energy of the deuteron, determined from mass

measurements, is W = 2.23 Mev.

(b) Determine the value of V4 in MeV.

(c) Determine whether or not the deuteron has any excited but still bound [ = 0 states.



10.7 Three-dimensional isotropic harmonic oscillator.

Consider a quantum particle of mass m moving in the presence of a three-dimensional har-
monic potential V (r) = %muﬂrz. Since the potential is spherically symmetric, we know that
energy eigenstates can be taken to be simultaneous eigenstates of [? and L,. The position-

space wave functions of these eigenstates will then have the form i (r, 0, ¢) = R(r)Y;™(6, ¢).

(a) Write down the radial equation for the function u(r) = rR(r).

(b) Introduce the dimensionless radial coordinate p = /ZZr and let e = 22 where E is

the energy of the state and show that the radial equation can be written,

d? , L(l+1) -
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It can be shown that the solutions to (1) have the form u(p) = e=#*/2v(p) where
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(Feel free to show this yourself, but for purposes of this problem it is OK to just assume it.)

(¢) Show that if u(p) = e ?/2v(p) the radial equation (1) implies that v(p) satisfies the

following equation,

v =0. (2)

(d) Plug in the power series expression for v(p) into (2) and obtain a recursion relation for

the coefficients a,. Determine the quantized values of £ for which the series truncates.

(e) Construct the normalized ground state wave function (with [ = 0 and £ = 3hw) and
the three first excited state wave functions (with [ =1, m = —1,0,1 and E = 2hw)

for this particle.

10.8 Consider a He™ ion which consists of a single electron orbiting a nucleus of charge +2e.
If the nucleus of this atom absorbs a positron the nuclear charge will suddenly become +3e
(i.e. the ion will become a Li** ion). Assume the electron in the Helium ion was in its

ground state before the positron absorption.
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(a) What is the probability that, immediately after the positron absorption, the electron

will be found in the ground state (n = 1) of the Li** ion?

(b) What is the probability that, immediately after the positron absorption, the electron

will be found in each of the four degenerate n = 2 excited states of the Li>* ion?

You may use the sudden approximation which assumes that the system remains in the

ground state of the Hydrogen-like ion immediately after absorbing the positron.

10.9 Virial Theorem.

Consider a three-dimensional quantum particle with Hamiltonian,
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(a) Obtain the Heisenberg equation of motion for the operator ) = 7P

(b) Use your result from Part (a) and the fact that in a stationary state (€2) is time-
independent to show that if |¢) is an eigenstate of H then

(ATI) = (7 TV (1),

where
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P
2m

is the kinetic energy operator. This is the quantum-mechanical version of the virial theorem.

(¢) Apply your result from Part (b) to the case of a spherically symmetric potential of the

form with V(r) = kr® and show that in this case the virial theorem states that,

o
() = S(v), 3)
in any energy eigenstate.

(d) Verify that (3) holds for the ground state of the isotropic harmonic oscillator (o = 2)
and the ground state of the hydrogen atom (o = —1).



