
Physics 5645

Quantum Mechanics A

Problem Set IX

Due: Friday, Dec 6, 2019

10.1 Constructing spherical harmonics.

(a) Use the fact that Lz|11〉 = ~|11〉 and L+|11〉 = 0 and the position representations of

L+ and Lz,

〈~r|L+|ψ〉 = ~eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
〈~r|ψ〉,

〈~r|Lz|ψ〉 =
~
i

∂

∂φ
〈~r|ψ〉,

to explicitly derive Y 1
1 (θ, φ). Normalize it by carrying out the appropriate spherical

integral. To be consistent with the usual convention be sure to include the appropriate

factor of (−1)l.

(b) By repeatedly applying the lowering operator L− using the property that L−|l,m〉 =

~
√

(l +m)(l −m+ 1)|l,m− 1〉 and the position representation of L−,

〈~r|L−|ψ〉 = −~e−iφ
(
∂

∂θ
− i cot θ

∂

∂φ

)
〈~r|ψ〉,

obtain Y 0
1 (θ, φ) and Y −11 (θ, φ). Compare your results with the familiar expressions,

Y 0
1 (θ, φ) =

(
3

4π

)1/2

cos θ, Y ±11 (θ, φ) = ∓
(

3

8π

)1/2

sin θe±iφ.

10.2 Parity and angular momentum.

Prove that under the parity operation ~r → −~r,

Y m
l → (−1)lY m

l .

Hint: Show that this is true for Y l
l , for which you have a simple explicit form, and then

verify that applying L− does not alter the parity.



10.3 Spherical harmonics in Cartesian coordinates.

(a) Show that the l = 1 spherical harmonics (see 10.1) can be expressed in Cartesian

coordinates as,

Y 0
1 =

(
3

4π

)1/2
z

r
, Y ±11 = ∓

(
3

4π

)1/2
x± iy
21/2r

.

(b) Now consider a particle in a state for which the position-space wave function is,

ψ(~r) = A(x+ y + 2iz)e−αr,

where A is a normalization constant. Using the result of Part (a), determine the

probabilities for all possible results of an Lz measurement on this particle.

10.4 Rotating Y m
l s.

Under a rotation through angle φ about the x-axis the x, y, and z components of the position

vector of a particle transform as

x → x

y → y cosφ− z sinφ

z → z cosφ+ y sinφ

Thus, under this rotation, the spherical harmonic Y 0
1 must transform as

Y 0
1 =

(
3

4π

)1/2
z

r
→
(

3

4π

)1/2
z cosφ− y sinφ

r

(The difference in sign of the y sinφ term is due to the fact that we are considering an active

rotation.)

(a) Expand the rotated Y 0
1 in terms of the unrotated Y 1

1 , Y 0
1 , and Y −11 .

(b) Compare your result with that obtained using the spin-1 matrix representation of the

x-axis rotation operator found in Problem 9.3. Hint: Apply the rotation matrix to

the column vector 
0

1

0

 ,

which corresponds to the state Y 0
1 .
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(c) Repeat Parts (a) and (b) for the rotated Y 1
1 and Y −11 .

10.5 Commutation relations.

Using the fundamental commutation relations [r̂i, r̂j] = [p̂i, p̂j] = 0, and [r̂i, p̂j] = i~δij, show

that [~L, ~̂r2] = 0 and [~L, ~̂p2] = 0, where ~̂r2 = x̂2 + ŷ2 + ẑ2 and ~̂p2 = p̂2x + p̂2y + p̂2z.

10.6 Finite spherical well.

A three-dimensional quantum particle of mass m is confined by the potential

V (r) =

 −V0 r < a,

0 r ≥ a

where V0 > 0.

(a) Show that the l = 0 bound states occur when,

ka cot ka = −ρa,

where k =
√

2m(E+V0)
~2 and ρ =

√
−2mE

~2 . (Note the similarity of this problem to

Problem 6.2.)

This potential provides a crude approximation to the potential energy of the deuteron

(proton-neutron bound state) as a function of proton-neutron separation, r. In what follows

take m to be the proton-neutron reduced mass (m = mpmn/(mp + mn) ' 470 MeV/c2),

a to be the approximate size of the deuteron measured from scattering experiments, a =

1.5 fm, and use the fact that the binding energy of the deuteron, determined from mass

measurements, is W = 2.23 Mev.

(b) Determine the value of V0 in MeV.

(c) Determine whether or not the deuteron has any excited but still bound l = 0 states.
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10.7 Three-dimensional isotropic harmonic oscillator.

Consider a quantum particle of mass m moving in the presence of a three-dimensional har-

monic potential V (r) = 1
2
mω2r2. Since the potential is spherically symmetric, we know that

energy eigenstates can be taken to be simultaneous eigenstates of ~L2 and Lz. The position-

space wave functions of these eigenstates will then have the form ψ(r, θ, φ) = R(r)Y m
l (θ, φ).

(a) Write down the radial equation for the function u(r) = rR(r).

(b) Introduce the dimensionless radial coordinate ρ =
√

mω
~ r and let ε = 2E

~ω where E is

the energy of the state and show that the radial equation can be written,(
− d2

dρ2
+ ρ2 +

l(l + 1)

ρ2

)
u(ρ) = εu(ρ). (1)

It can be shown that the solutions to (1) have the form u(ρ) = e−ρ
2/2v(ρ) where

v(ρ) = ρl+1(a0 + a2ρ
2 + a4ρ

4 + · · ·) = ρl+1

∞∑
q=0,2,4,···

aqρ
q.

(Feel free to show this yourself, but for purposes of this problem it is OK to just assume it.)

(c) Show that if u(ρ) = e−ρ
2/2v(ρ) the radial equation (1) implies that v(ρ) satisfies the

following equation,

d2v

dρ2
− 2ρ

dv

dρ
+ (ε− 1)v − l(l + 1)

ρ2
v = 0. (2)

(d) Plug in the power series expression for v(ρ) into (2) and obtain a recursion relation for

the coefficients aq. Determine the quantized values of E for which the series truncates.

(e) Construct the normalized ground state wave function (with l = 0 and E = 3
2
~ω) and

the three first excited state wave functions (with l = 1, m = −1, 0, 1 and E = 5
2
~ω)

for this particle.

10.8 Consider a He+ ion which consists of a single electron orbiting a nucleus of charge +2e.

If the nucleus of this atom absorbs a positron the nuclear charge will suddenly become +3e

(i.e. the ion will become a Li2+ ion). Assume the electron in the Helium ion was in its

ground state before the positron absorption.
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(a) What is the probability that, immediately after the positron absorption, the electron

will be found in the ground state (n = 1) of the Li2+ ion?

(b) What is the probability that, immediately after the positron absorption, the electron

will be found in each of the four degenerate n = 2 excited states of the Li2+ ion?

You may use the sudden approximation which assumes that the system remains in the

ground state of the Hydrogen-like ion immediately after absorbing the positron.

10.9 Virial Theorem.

Consider a three-dimensional quantum particle with Hamiltonian,

H =
~̂p2

2m
+ V (~̂r).

(a) Obtain the Heisenberg equation of motion for the operator Ω = ~̂r · ~̂p.

(b) Use your result from Part (a) and the fact that in a stationary state 〈Ω〉 is time-

independent to show that if |ψ〉 is an eigenstate of H then

〈ψ|T |ψ〉 =
1

2
〈ψ|~̂r · ~∇V (~̂r)|ψ〉,

where

T =
~̂p2

2m

is the kinetic energy operator. This is the quantum-mechanical version of the virial theorem.

(c) Apply your result from Part (b) to the case of a spherically symmetric potential of the

form with V (r) = krα and show that in this case the virial theorem states that,

〈T 〉 =
α

2
〈V 〉, (3)

in any energy eigenstate.

(d) Verify that (3) holds for the ground state of the isotropic harmonic oscillator (α = 2)

and the ground state of the hydrogen atom (α = −1).
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