4.1 Show that if the position-space wave function for a particle, $\psi(x) = \langle x|\psi\rangle$, is real valued then the expectation value of the momentum operator in that state is $\langle \hat{p} \rangle = 0$. (Hint: Show that the probabilities to measure momenta of $+p$ and $-p$ are equal.) Also show that multiplying $\psi(x)$ by a constant, even if complex, does not change this result. (It better not, since the states $|\psi\rangle$ and $c|\psi\rangle$ are physically equivalent.)

4.2 Problem 1.27, Sakurai and Napolitano, Pg. 63.

4.3 Problem 1.32 Part (b), Sakurai and Napolitano, Pg. 65.

4.4 A one-dimensional particle is in the state $|\psi\rangle = \int \psi(x)|x\rangle dx$ where $\psi(x) = \langle x|\psi\rangle$, the position-space wave function, is given by

$$\psi(x) = \begin{cases} A & -a \leq x \leq a, \\ 0 & \text{otherwise.} \end{cases}$$

(a) Find A so that $|\psi\rangle$ is normalized and compute the momentum-space wave function for this state, $\tilde{\psi}(p) = \langle p|\psi\rangle$.

(b) If an experiment were performed to measure the momentum p of the particle in this state, what is the probability that the result would be such that $|p| \geq \hbar/a$? [To answer this you may need to do an integral numerically.]

4.5 Problem 2.2, Sakurai and Napolitano, Pg. 148.

4.6 Consider the precession of the spin of an electron in a uniform magnetic field $\vec{B} = B\hat{k}$ for which the Hamiltonian is

$$H = -\frac{eB}{mc}S_z = \omega S_z,$$

where $\omega = \frac{|e|B}{mc}$.
At time $t = 0$ the electron spin is in the state,

$$|\psi(0)\rangle = \cos \frac{\theta}{2} |\rangle + \sin \frac{\theta}{2} |\rangle,$$

(i.e., an eigenstate of the operator $\hat{n} \cdot \hat{S}$ with eigenvalue $+\hbar/2$ where \hat{n} is in the xz plane and makes an angle θ with the z axis.) In what follows work within the Schrödinger picture.

(a) Obtain the time dependent state $|\psi(t)\rangle$.

(b) Find the probability for finding the electron in the $S_x = \hbar/2$ state as a function of time.

(c) Obtain the expectation values of S_x, S_y, and S_z as a function of time. Describe the time evolution of the vector $\langle \mathbf{S} \rangle = \langle \psi(t) | \mathbf{S} | \psi(t) \rangle$.