Physics 5646

Quantum Mechanics B
Problem Set II
Due: Tuesday, Jan 30, 2018
2.1 Recall that the $\mathrm{j}=1 / 2$ matrix representation of $D(R(\hat{j} \phi))$, i.e. the rotation operator for a y-axis rotation through angle ϕ, is

$$
e^{-i \sigma_{y} \phi / 2}=\cos \frac{\phi}{2} \mathbb{1}-i \sigma_{y} \sin \frac{\phi}{2}=\left(\begin{array}{cc}
\cos \frac{\phi}{2} & \sin \frac{\phi}{2} \\
-\sin \frac{\phi}{2} & \cos \frac{\phi}{2}
\end{array}\right) .
$$

Now consider the Hilbert space of two spin- $1 / 2$ particles spanned by the states $| \pm, \pm\rangle$.
(a) Compute $D(R(\hat{j} \phi))|+-\rangle$ and $D(R(\hat{j} \phi))|-+\rangle$, expressing your results in the $| \pm, \pm\rangle$ basis.
(b) Using your results from (a), show directly that

$$
D(R(\hat{j} \phi)) \frac{1}{\sqrt{2}}(|+-\rangle-|-+\rangle)=\frac{1}{\sqrt{2}}(|+-\rangle-|-+\rangle) .
$$

(c) Now determine

$$
D(R(\hat{j} \phi)) \frac{1}{\sqrt{2}}(|+-\rangle+|-+\rangle)
$$

and express your result as a superposition of total angular momentum states $|s m\rangle=$ $|11\rangle,|10\rangle$, and $|1-1\rangle$.
2.2 Consider the rank-1 spherical tensor representation of the vector $\mathbf{V}=\left(V_{x}, V_{y}, V_{z}\right)$,

$$
V_{ \pm 1}^{(1)}=\mp \frac{V_{x} \pm i V_{y}}{\sqrt{2}}, \quad V_{0}^{(1)}=V_{z} .
$$

(a) Use the expression for the $j=1$ matrix representation of the x-axis rotation operator $D(R(\hat{i} \phi))=e^{-i \frac{J_{x}}{\hbar} \phi}$ you obtained in Problem 9-3 last semester,

$$
e^{-i \frac{J_{x}^{(1)}}{h} \phi}=\left(\begin{array}{lll}
\frac{1}{2}(1+\cos \phi) & -\frac{i}{\sqrt{2}} \sin \phi-\frac{1}{2}(1-\cos \phi) \\
-\frac{i}{\sqrt{2}} \sin \phi & \cos \phi & -\frac{i}{\sqrt{2}} \sin \phi \\
-\frac{1}{2}(1-\cos \phi) & -\frac{i}{\sqrt{2}} \sin \phi & \frac{1}{2}(1+\cos \phi)
\end{array}\right)
$$

to evaluate

$$
\sum_{q^{\prime}} D_{q^{\prime} q}^{(1)}(R(\hat{i} \phi)) V_{q^{\prime}}^{(1)},
$$

for $q=-1,0,1$. Verify that your results are what you expect from the transformation properties of (V_{x}, V_{y}, V_{z}) under rotation.
(b) Repeat Part (a) for rotations about the z-axis, i.e. evaluate

$$
\sum_{q^{\prime}} D_{q^{\prime} q}^{(1)}(R(\hat{k} \phi)) V_{q^{\prime}}^{(1)}
$$

for $q=-1,0,1$ and verify again that your result agrees with what you expect from the transformation properties of $\left(V_{x}, V_{y}, V_{z}\right)$. [To do this you will need the $j=1$ matrix representation of the z-axis rotation operator $D(R(\hat{k} \phi))=e^{-i \frac{J z}{\hbar} \phi}$, but this should be straightforward to determine.]
(Since any rotation can be carried out through a sequence of rotations, first about the z axis, then x-axis, then z-axis again, the above results prove that $V_{q}^{(1)}$ transforms as a rank-1 spherical tensor for arbitrary rotations.)
2.3 Consider two vector operators $\mathbf{U}=\left(U_{x}, U_{y}, U_{z}\right)$ and $\mathbf{V}=\left(V_{x}, V_{y}, V_{z}\right)$.
(a) Construct the two rank-1 spherical tensors, $U_{q}^{(1)}$ and $V_{q}^{(1)}$, corresponding to the two vector operators \mathbf{U} and \mathbf{V}.
(b) Build the rank-0 spherical tensor $T_{0}^{(0)}$ from $U_{q}^{(1)}$ and $V_{q}^{(1)}$ and show that $T_{0}^{(0)} \propto \mathbf{U} \cdot \mathbf{V}$.
(c) Build the rank-1 spherical tensor $T_{q}^{(1)}$ from $U_{q}^{(1)}$ and $V_{q}^{(1)}$ and show that $T_{0}^{(1)} \propto(\mathbf{U} \times \mathbf{V})_{z}$.
(d) Build the rank-2 spherical tensor $T_{q}^{(2)}$ from $U_{q}^{(1)}$ and $V_{q}^{(1)}$.
2.4 Quadrupole moment expectation values.
(a) Using the result of Problem 2.3, construct the rank-2 spherical tensor for the case $\mathrm{U}=\mathrm{V}=\hat{\mathbf{r}}$.
(b) The expectation value,

$$
Q=\left\langle\alpha^{\prime}, j m=j\right|\left(2 \hat{z}^{2}-\hat{x}^{2}-\hat{y}^{2}\right)|\alpha, j m=j\rangle,
$$

is known as the quadrupole moment. Using the Wigner-Eckart theorem (and your result from Part (a)), evaluate

$$
\left\langle\alpha^{\prime}, j m^{\prime}\right|\left(\hat{x}^{2}-\hat{y}^{2}\right)|\alpha, j m\rangle,
$$

in terms of Q and the appropriate Clebsch-Gordan coefficients.

