Physics 5646
 Quantum Mechanics B
 Problem Set V

Due: Tuesday, Feb 27, 2018
5.1 Reconsider the Hamiltonian for a spin- $1 / 2$ particle with gyromagnetic ratio γ in a magnetic field $\mathbf{B}=B \hat{i}+B_{0} \hat{k}$ you studied in Problem 4.3,

$$
H=-\gamma \mathbf{S} \cdot \mathbf{B}=-\frac{\hbar \gamma}{2}\left(B_{0} \sigma_{z}+B \sigma_{x}\right) .
$$

Once again treat the term proportional to B as a perturbation, but this time consider the limit $B \gg B_{0}$ for which the unperturbed levels are "almost" degenerate.

Show that the exact eigenstates of H in this limit closely resemble would you would obtain by taking $B_{0}=0$, so that the unperturbed levels are degenerate, and applying degenerate perturbation theory to this problem.
5.2 Consider an isotropic harmonic oscillator in two dimensions with Hamiltonian,

$$
H_{0}=\frac{1}{2 m}\left(\hat{p}_{x}^{2}+\hat{p}_{y}^{2}\right)+\frac{1}{2} m \omega^{2}\left(\hat{x}^{2}+\hat{y}^{2}\right) .
$$

(a) What are the energies of the three lowest-lying states? Is there any degeneracy?

Now consider the effect of the perturbation

$$
V=\lambda m \omega^{2} \hat{x} \hat{y}
$$

on this oscillator. Here λ is a dimensionless real number much smaller than one in magnitude.
(b) Find the zeroth-order energy eigenkets and the corresponding energies to first-order in λ for each of these three low-lying states.
(c) Solve the $H_{0}+V$ problem exactly and compare the results you obtain with what you find in Part (b). Hint: Try rotating the coordinate system from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ where $x^{\prime}=\frac{1}{\sqrt{2}}(x+y)$ and $y^{\prime}=\frac{1}{\sqrt{2}}(-x+y)$.
5.3 Work out the Stark effect to lowest non-vanishing order for the $n=3$ levels of the hydrogen atom. Obtain not only the first-order energy shifts due to the perturbation $V=-e \mathcal{E} \hat{\mathcal{Z}}$, but also the corresponding zeroth-order eigenkets. Ignore any fine-structure corrections or spin.
5.4 Consider the effect on the $n=2$ states of the hydrogen atom due to a perturbation of the form,

$$
V=\lambda\left(\hat{x}^{2}-\hat{y}^{2}\right)
$$

Again ignore any fine-structure corrections or spin.
(a) Recall that $\hat{x}^{2}-\hat{y}^{2}=T_{2}^{(2)}+T_{-2}^{(2)}$ where $T_{q}^{(2)}$ is the spherical tensor of rank 2 you constructed in Part (a) of Problem 2.4. Using this fact, determine which matrix matrix elements of V in the $|2 l m\rangle$ basis do not vanish.
(b) Determine the first-order energy shifts of the $n=2$ states and the corresponding zeroth-order eigenkets using degenerate perturbation theory.

Some H -atom radial functions [needed Y_{l}^{m} s can be found in Appendix B of Sakurai and Napolitano (pg. 528)]:

$$
\begin{aligned}
R_{10}(r) & =\frac{1}{a_{0}^{3 / 2}} 2 e^{-r / a_{0}} \\
R_{20}(r) & =\frac{1}{\left(2 a_{0}\right)^{3 / 2}}\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}} \\
R_{21}(r) & =\frac{1}{\left(2 a_{0}\right)^{3 / 2}} \frac{1}{\sqrt{3}} \frac{r}{a_{0}} e^{-r / 2 a_{0}} \\
R_{30}(r) & =\frac{1}{\left(3 a_{0}\right)^{3 / 2}} 2\left(1-\frac{2}{3} \frac{r}{a_{0}}+\frac{2}{27} \frac{r^{2}}{a_{0}^{2}}\right) e^{-r / 3 a_{0}} \\
R_{31}(r) & =\frac{1}{\left(3 a_{0}\right)^{3 / 2}} \frac{4 \sqrt{2}}{3} \frac{r}{a_{0}}\left(1-\frac{1}{6} \frac{r}{a_{0}}\right) e^{-r / 3 a_{0}} \\
R_{32}(r) & =\frac{1}{\left(3 a_{0}\right)^{3 / 2}} \frac{2 \sqrt{2}}{27 \sqrt{5}} \frac{r^{2}}{a_{0}^{2}} e^{-r / 3 a_{0}}
\end{aligned}
$$

