Physics 5646
 Quantum Mechanics B
 Problem Set VI

Due: Thursday, Feb 28, 2019

6.1 Useful Hydrogen Atom Expectation Values I

The radial equation for the hydrogen atom is,

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}-\frac{e^{2}}{r}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}\right) u(r)=E u(r)
$$

where $u(r)=r R(r)$. Last semester, we solved this equation using the power series method, and found that normalizable solutions occurred when

$$
E=-\frac{e^{2}}{2 a_{0}} \frac{1}{(p+l+1)^{2}}, \quad p=0,1,2, \cdots
$$

where $n=p+l+1$ is then the usual n quantum number for hydrogen.
If we imagine adding a perturbation

$$
V=\frac{\lambda}{\hat{r}^{2}}
$$

to the hydrogen atom, it is easy to see that the radial equation will be modified as follows,

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}-\frac{e^{2}}{r}+\frac{\hbar^{2} l(l+1)}{2 m r^{2}}+\frac{\lambda}{r^{2}}\right) u(r)=E u(r) \tag{1}
\end{equation*}
$$

(a) Show that the radial equation for the perturbed problem (1) can be rewritten,

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}-\frac{e^{2}}{r}+\frac{\hbar^{2} l^{\prime}\left(l^{\prime}+1\right)}{2 m r^{2}}\right) u(r)=E u(r)
$$

where l^{\prime} is a function of λ.
(b) The power series analysis applied to the perturbed problem will yield the same result for the quantized energy levels we obtained last semester, but with l replaced by l^{\prime}. The resulting exact energy levels can then be expanded in powers of λ as follows,

$$
E=-\frac{e^{2}}{2 a_{0}} \frac{1}{\left(p+l^{\prime}+1\right)^{2}}=E^{0}+\lambda E^{1}+\lambda^{2} E^{2}+\cdots
$$

Here λE^{1} is the first order energy shift due to the perturbation $V=\frac{\lambda}{\hat{r}^{2}}$. Use that fact, and the fact that

$$
\lambda E^{1}=\left.\lambda \frac{d E}{d \lambda}\right|_{\lambda=0}=\left.\left.\lambda \frac{d E}{d l^{\prime}}\right|_{l^{\prime}=l} \frac{d l^{\prime}}{d \lambda}\right|_{\lambda=0}
$$

To show that the expectation value of $1 / \hat{r}^{2}$ in a hydrogen-atom energy eigenstate is

$$
\left\langle\frac{1}{\hat{r}^{2}}\right\rangle=\frac{1}{a_{0}^{2} n^{3}\left(l+\frac{1}{2}\right)}
$$

6.2 Useful Hydrogen Atom Expectation Values II

(a) Show that the operator (in position representation using spherical coordinates),

$$
\hat{p}_{r}=\frac{\hbar}{i}\left(\frac{\partial}{\partial r}+\frac{1}{r}\right)
$$

has the property that

$$
\hat{p}_{r}^{2}=-\hbar^{2} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r},
$$

and, hence, the Hamiltonian for the hydrogen atom can be expressed (again in position representation),

$$
H=\frac{\hat{p}_{r}^{2}}{2 m}+\frac{1}{2 m r^{2}} \vec{L}^{2}-\frac{e^{2}}{r} .
$$

where [CORRECTION!]

$$
\vec{L}^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) .
$$

Here \hat{p}_{r} is the operator corresponding to the radial component of the momentum. In what follows you may use the fact that $\left[\hat{p}_{r}, \vec{L}^{2}\right]=0$ which follows trivially from the fact that \vec{p}_{r} acts only on r and \vec{L}^{2} acts only on θ and ϕ.
(b) Show that for any operator O,

$$
\langle[H, O]\rangle=0,
$$

if the expectation value is taken in a hydrogen-atom energy eigenstate.
(c) Evaluate $\left[H, \hat{p}_{r}\right]$. Show that when the result is combined with what you proved in Part (b) you find that,

$$
\left\langle\frac{1}{\hat{r}^{3}}\right\rangle=\frac{1}{a_{0}} \frac{1}{l(l+1)}\left\langle\frac{1}{\hat{r}^{2}}\right\rangle .
$$

Finally, using the result from Problem 6.1, show that

$$
\left\langle\frac{1}{\hat{r}^{3}}\right\rangle=\frac{1}{a_{0}^{3}} \frac{1}{n^{3} l\left(l+\frac{1}{2}\right)(l+1)}
$$

6.3 Heisenberg equations of motion for a charged particle.

The Hamiltonian for a particle of mass m and charge e moving in the presence of a magnetic and electric field is

$$
H=\frac{1}{2 m}\left(\hat{\vec{p}}-\frac{e}{c} \vec{A}\right)^{2}+e \phi
$$

where \vec{A} and ϕ are the vector and scalar potentials corresponding to magnetic and electric fields $\vec{B}=\vec{\nabla} \times \vec{A}$ and $\vec{E}=-\vec{\nabla} \phi$. Here we assume \vec{A} and ϕ do not depend on time.
(a) Show that the Heisenberg equation of motion for $\hat{\vec{r}}$ is

$$
\frac{d \hat{\vec{r}}}{d t}=\frac{1}{i \hbar}[\hat{\vec{r}}, H]=\frac{1}{m}\left(\hat{\vec{p}}-\frac{e}{c} \vec{A}\right) \equiv \frac{1}{m} \vec{\Pi} .
$$

Here $\vec{\Pi}=\hat{\vec{p}}-\frac{e}{c} \vec{A}$ is the gauge invariant kinematical momentum.
(b) Show that

$$
\left[\Pi_{i}, \Pi_{j}\right]=i \frac{\hbar e}{c} \sum_{k} \epsilon_{i j k} B_{k}
$$

where the indices run over x, y, and z in the usual way.
(c) Show that the Heisenberg equation of motion for $\vec{\Pi}$ is

$$
\frac{d \vec{\Pi}}{d t}=\frac{1}{i \hbar}[\vec{\Pi}, H]=e \vec{E}+\frac{1}{2 c}\left(\frac{\vec{\Pi}}{m} \times \vec{B}-\vec{B} \times \frac{\vec{\Pi}}{m}\right)
$$

Hint: You can use the result from Part (b) and the fact that $H=\frac{\overrightarrow{\mathrm{n}}^{2}}{2 m}+e \phi$.
(d) Combining your result from Parts (a) and (c), show that

$$
m \frac{d^{2} \hat{r}}{d t^{2}}=e \vec{E}+\frac{1}{2 c}\left(\frac{d \hat{\vec{r}}}{d t} \times \vec{B}-\vec{B} \times \frac{d \hat{\vec{r}}}{d t}\right)
$$

(e) Argue that if you form a wave packet, and if \vec{E} and \vec{B} are smooth enough functions of \vec{r} that they can be treated as being approximately constant over the size of this wave packet, then the wave packet will follow the usual Lorentz force law of a charged particle moving through an electric and magnetic field.

