Physics 5646
 Quantum Mechanics B
 Problem Set VII

Due: Thursday, Mar 14, 2019

7.1 Projection Theorem.

In what follows you may use the fact that

$$
\langle 10, j j \mid j j\rangle=-\sqrt{\frac{j}{j+1}},
$$

(this is a special case of one of the Clebsch-Gordan coefficients I calculated in class) and the Wigner-Eckart theorem, which, using Sakurai's convention for the reduced matrix element, is

$$
\left\langle\alpha^{\prime}, j^{\prime} m^{\prime}\right| T_{q}^{(k)}|\alpha, j m\rangle=\left\langle k q, j m \mid j^{\prime} m^{\prime}\right\rangle \frac{\left\langle\alpha^{\prime}, j^{\prime}\right|\left|T^{(k)}\right||\alpha, j\rangle}{\sqrt{2 j+1}}
$$

(a) Show that

$$
\frac{\left\langle\alpha^{\prime}, j^{\prime}\right|\left|J^{(1)}\right||\alpha, j\rangle}{\sqrt{2 j+1}}=-\delta_{\alpha \alpha^{\prime}} \delta_{j j^{\prime}} \sqrt{j(j+1)}
$$

(b) Consider an arbitrary vector operator $\vec{V}=\left(V_{x}, V_{y}, V_{z}\right)$. Using the fact that

$$
\vec{J} \cdot \vec{V}=J_{z} V_{z}+\frac{1}{2}\left(J_{+} V_{-}+J_{-} V_{+}\right)
$$

where $V_{ \pm}=V_{x} \pm i V_{y}$, show that

$$
\left\langle\alpha^{\prime}, j m^{\prime}\right| \vec{J} \cdot \vec{V}|\alpha, j m\rangle=c_{j m} \frac{\left\langle\alpha^{\prime}, j\left\|V^{(1)}\right\| \alpha, j\right\rangle}{\sqrt{2 j+1}}
$$

where $c_{j m}$ does not depend on α, α^{\prime} or \vec{V}. Then use the result of Part (a) to show that

$$
c_{j m}=-\hbar \sqrt{j(j+1)} \delta_{m m^{\prime}} .
$$

(c) Using the previous result, show that

$$
\left\langle\alpha^{\prime}, j m^{\prime}\right| V_{q}^{(1)}|\alpha, j m\rangle=\frac{\left\langle\alpha^{\prime}, j m\right| \vec{J} \cdot \vec{V}|\alpha, j m\rangle}{\hbar^{2} j(j+1)}\left\langle j m^{\prime}\right| J_{q}^{(1)}|j m\rangle .
$$

This result is known as the projection theorem.
(d) Use the projection theorem to show that if $|n j m ; l s\rangle$ is the H -atom state with total angular momentum quantum number j, J_{z} quantum number m, and orbital and spin quantum numbers l and $s(=1 / 2)$, that

$$
\langle n j m ; l s| V_{Z}|n j m ; l s\rangle=-\frac{e \hbar}{2 m_{e} c} g_{j l s} m B ; \quad g_{j l s}=1+\frac{j(j+1)-l(l+1)+3 / 4}{2 j(j+1)}
$$

where

$$
V_{z}=-\frac{e}{2 m_{e} c}\left(L_{z}+2 S_{z}\right) B
$$

is the Zeeman term describing the coupling of a magnetic field $\vec{B}=B \hat{k}$ to the orbital and spin magnetic moments of the electron.

7.2 Hyperfine Structure.

In addition to the Coulomb interaction, the electron and proton interact via the so-called hyperfine interaction, In the $1 s$ state of the Hydrogen atom, this interaction takes the form

$$
H_{h f}=A \vec{S}_{e} \cdot \vec{S}_{p}
$$

where \vec{S}_{e} and \vec{S}_{p} are the electron and proton spins, respectively.
(a) Show that $H_{h f}$ splits the ground state of the hydrogen atom into two levels with energies,

$$
E_{+}=E_{1}+\frac{\hbar^{2} A}{4}, \quad E_{-}=E_{1}-\frac{3 \hbar^{2} A}{4}
$$

where the electron and proton spins form a singlet (triplet) in the state(s) with energy $E_{-}\left(E_{+}\right)$. Here E_{1} is the ground state energy of hydrogen without $H_{h f}\left(E_{1}=-\frac{e^{2}}{2 a_{0}}\right.$ in the absence of fine structure corrections).
(b) The origin of the hyperfine coupling is the interaction between the magnetic dipole moments of the electron, $\vec{\mu}_{e}=-\frac{|e|}{m_{e} c} \vec{S}_{e}$, and proton, $\vec{\mu}_{p}=g_{p} \frac{|e|}{2 m_{p} c} \vec{S}_{p}$, where m_{e} and m_{p} are electron and proton masses, respectively, and $g_{p} \simeq 5.7$ is the proton g-factor. While this interaction is somewhat complicated, the net effect in the $1 s$ state is an effective interaction of the form

$$
H \simeq-\frac{1}{a_{0}^{3}} \vec{\mu}_{e} \cdot \vec{\mu}_{p}
$$

Using this, estimate the coupling A in Part (a), and show that the splitting between E_{+}and E_{-}is on the order of

$$
E_{+}-E_{-} \sim \frac{m_{e}}{m_{p}} \alpha^{2} \frac{e^{2}}{2 a_{0}}
$$

Thus we see that the hyperfine splitting, like the fine structure splittings, is on the order of $\alpha^{2} E_{1}$, but is also smaller by an additional factor of m_{e} / m_{p}. Using this result, estimate the order of magnitude of the wavelength of a photon emitted when the atom undergoes a transition from E_{+}to E_{-}. [The actual wavelength for this transition is 21 cm - the famous "21-cm line" of great importance in radio astronomy.]

7.3 He Atom: First-Order Ground State Energy Shift.

The Hamiltonian for a He-like atom in which two electrons are bound to a nucleus of charge $Z|e|$ is

$$
H=H_{0}+H_{12}
$$

where

$$
H_{0}=\frac{{\hat{p_{1}}}^{2}}{2 m}-\frac{Z e^{2}}{\hat{r}_{1}}+\frac{{\hat{p_{2}}}^{2}}{2 m}-\frac{Z e^{2}}{\hat{r}_{2}} \quad \text { and } \quad H_{12}=\frac{e^{2}}{\left|\hat{\vec{r}}_{1}-\hat{\vec{r}_{2}}\right|} .
$$

Let H_{0}, which describes two noninteracting electrons in the presence of the charge $+Z|e|$ nucleus, be the unperturbed Hamiltonian, and let $\left|\psi_{G S}^{0}\right\rangle$ denote the unperturbed ground state of H_{0}, which, in the position representation, is

$$
\left\langle\vec{r}_{1}, \vec{r}_{2}, m_{s 1}, m_{s 2} \mid \psi_{G S}^{0}\right\rangle=\psi_{100, Z}\left(\vec{r}_{1}\right) \psi_{100, Z}\left(\vec{r}_{2}\right) \chi_{\text {singlet }}\left(m_{s 1}, m_{s 2}\right),
$$

where

$$
\psi_{100, Z}(\vec{r})=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-Z r / a_{0}}
$$

Calculate that the first order ground state energy shift due to the perturbation H_{12},

$$
E_{G S}^{1}=\left\langle\psi_{G S}^{0}\right| H_{12}\left|\psi_{G S}^{0}\right\rangle=\int\left|\psi_{100, Z}\left(\vec{r}_{1}\right)\right|^{2}\left|\psi_{100, Z}\left(\vec{r}_{2}\right)\right|^{2} \frac{e^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|} d^{3} r_{1} d^{3} r_{2}
$$

[Answer: $E_{G S}^{1}=\frac{5}{8} \frac{Z e^{2}}{a_{0}}$.]
7.4 Use the following trial wave function with variational parameter $\lambda>0$,

$$
\psi_{\lambda}(x)=\left\{\begin{array}{cc}
A_{\lambda}\left(x^{2}-\lambda^{2}\right)^{2}, & -\lambda<x<\lambda \\
0, & \text { otherwise }
\end{array}\right.
$$

to estimate the ground state energy of the one-dimensional harmonic oscillator with Hamiltonian $H=\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{x}^{2}$. Compare your result to the exact ground state energy $\frac{1}{2} \hbar \omega$.
7.5 Use the variational wave function $\psi_{\alpha}(\vec{r})=A_{\alpha} e^{-\alpha r^{2}}$ to estimate the ground state energy of the hydrogen atom with Hamiltonian $H=\frac{\hat{p}^{2}}{2 m}-\frac{e^{2}}{\hat{r}}$. Compare your variational result to the exact result.

