Physics 5646
 Quantum Mechanics B Problem Set VIII

Due: Thurday, Mar 28, 2019

8.1 Rabi Oscillations. [This is essentially Problem 5.30 in Sakurai and Napolitano. The only differences are 1) slight notational changes, and 2) I allow the parameter γ to be complex.] Consider a two-level system with $E_{1}<E_{2}$ and corresponding states $|1\rangle$ and $|2\rangle$. There is a time-dependent potential that connects the two levels as follows,

$$
\langle 1| V|1\rangle=\langle 2| V|2\rangle=0, \quad\langle 1| V|2\rangle=\gamma e^{i \omega t},\langle 2| V|1\rangle=\gamma^{*} e^{-i \omega t}
$$

The time-dependent state of the system, in the interaction picture, is $|\psi(t)\rangle_{I}=c_{1}(t)|1\rangle+$ $c_{2}(t)|2\rangle$. It is known that at $t=0$ the system is in the state $|1\rangle$, so $c_{1}(0)=1$ and $c_{2}(0)=0$.
(a) Find $\left|c_{1}(t)\right|^{2}$ and $\left|c_{2}(t)\right|^{2}$ for $t>0$ by exactly solving the coupled differential equations,

$$
\begin{aligned}
& i \hbar \dot{c}_{1}=\gamma e^{i\left(\omega-\omega_{0}\right) t} c_{2} \\
& i \hbar \dot{c}_{2}=\gamma^{*} e^{-i\left(\omega-\omega_{0}\right) t} c_{1}
\end{aligned}
$$

where $\omega_{0}=\left(E_{2}-E_{1}\right) / \hbar$.
(b) Do the same problem using first-order time-dependent perturbation theory. Compare the two approaches for small values of $|\gamma|$. Treat the following cases separately: (i) ω very different from ω_{0} and (ii) ω close to ω_{0}.
Answer for (a):

$$
\begin{aligned}
& \left|c_{1}(t)\right|^{2}=\frac{|\gamma|^{2} / \hbar^{2}}{|\gamma|^{2} / \hbar^{2}+\left(\omega-\omega_{0}\right)^{2} / 4} \sin ^{2}\left\{\left[\frac{|\gamma|^{2}}{\hbar^{2}}+\frac{\left(\omega-\omega_{0}\right)^{2}}{4}\right]^{1 / 2} t\right\} \\
& \left|c_{2}(t)\right|^{2}=1-\left|c_{1}(t)\right|^{2}
\end{aligned}
$$

8.2 [Problem 5.29 in Sakurai and Napolitano, again with minor changes.] Consider a system consisting of two spin- $1 / 2$ objects. For $t<0$ the spins do not interact and the Hamiltonian can be taken to be $H=0$. For $t>0$ the Hamiltonian is given by,

$$
H=\frac{J}{\hbar^{2}} \mathbf{S}_{1} \cdot \mathbf{S}_{2}
$$

Suppose the system is in the state $|+-\rangle$ for $t<0$. Find, as a function of time, the probability for the system to be found in the states $|++\rangle,|+-\rangle,|-+\rangle$, and $|--\rangle$,
(a) By solving the problem exactly.
(b) By solving the problem assuming the validity of first-order time-dependent perturbation theory with H as the perturbation switched on at $t=0$. Under what conditions does your perturbation result accurately describe the exact result?
8.3 Consider a one dimensional quantum particle of mass m moving in the presence of the harmonic potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$. For time $t<0$ the particle is in its ground state. The particle then experiences the following time-dependent perturbation:

$$
V(t)=\left\{\begin{array}{cc}
0 & t<0 \\
\kappa \hat{x}^{2} & 0 \leq t \leq t_{0} \\
0 & t>t_{0}
\end{array}\right.
$$

Assuming that first-order time-dependent perturbation theory is valid, find an expression for the probability that the particle will be found in an excited state for time $t>t_{0}$.
8.4 Problem 5.22, Sakurai and Napolitano, Pg. 380.
8.5 Problem 5.28, Sakurai and Napolitano, Pg. 382.

