
Physics 5646

Quantum Mechanics B

Problem Set VI

Due: Thursday, Feb 27, 2020

6.1 Useful Hydrogen Atom Expectation Values I

The radial equation for the hydrogen atom is,(
− ~2

2m

d2

dr2
− e2

r
+
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2mr2

)
u(r) = Eu(r),

where u(r) = rR(r). Last semester, we solved this equation using the power series method,

and found that normalizable solutions occurred when

E = − e2
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, p = 0, 1, 2, · · ·

where n = p+ l + 1 is then the usual n quantum number for hydrogen.

If we imagine adding a perturbation

V =
λ

r̂2

to the hydrogen atom, it is easy to see that the radial equation will be modified as follows,(
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)
u(r) = Eu(r). (1)

(a) Show that the radial equation for the perturbed problem (1) can be rewritten,(
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r
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)
u(r) = Eu(r),

where l′ is a function of λ.

(b) The power series analysis applied to the perturbed problem will yield the same result

for the quantized energy levels we obtained last semester, but with l replaced by l′.

The resulting exact energy levels can then be expanded in powers of λ as follows,

E = − e2
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Here λE1 is the first order energy shift due to the perturbation V = λ
r̂2

. Use that fact,

and the fact that
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To show that the expectation value of 1/r̂2 in a hydrogen-atom energy eigenstate is〈
1
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〉
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6.2 Useful Hydrogen Atom Expectation Values II

(a) Show that the operator (in position representation using spherical coordinates),
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)
,

has the property that
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,

and, hence, the Hamiltonian for the hydrogen atom can be expressed (again in position

representation),
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where
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Here p̂r is the operator corresponding to the radial component of the momentum. In

what follows you may use the fact that [p̂r, ~L
2] = 0 which follows trivially from the

fact that ~pr acts only on r and ~L2 acts only on θ and φ.

(b) Show that for any operator O,

〈[H,O]〉 = 0,

if the expectation value is taken in a hydrogen-atom energy eigenstate.

(c) Evaluate [H, p̂r]. Show that when the result is combined with what you proved in Part

(b) you find that, 〈
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〉
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Finally, using the result from Problem 6.1, show that〈
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〉
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6.3 Heisenberg equations of motion for a charged particle.

The Hamiltonian for a particle of mass m and charge e moving in the presence of a magnetic

and electric field is

H =
1

2m

(
~̂p− e

c
~A
)2

+ eφ,

where ~A and φ are the vector and scalar potentials corresponding to magnetic and electric

fields ~B = ~∇× ~A and ~E = −~∇φ. Here we assume ~A and φ do not depend on time.

(a) Show that the Heisenberg equation of motion for ~̂r is

d~̂r

dt
=

1

i~
[~̂r,H] =

1

m

(
~̂p− e

c
~A
)
≡ 1

m
~Π.

Here ~Π = ~̂p− e
c
~A is the gauge invariant kinematical momentum.

(b) Show that

[Πi,Πj] = i
~e
c

∑
k

εijkBk,

where the indices run over x,y, and z in the usual way.

(c) Show that the Heisenberg equation of motion for ~Π is

d~Π

dt
=

1

i~
[~Π, H] = e ~E +

e

2c

(
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m
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m

)
.

Hint: You can use the result from Part (b) and the fact that H =
~Π2

2m
+ eφ.

(d) Combining your result from Parts (a) and (c), show that

m
d2r̂

dt2
= e ~E +

e

2c

(
d~̂r

dt
× ~B − ~B × d~̂r

dt

)
.

(e) Argue that if you form a wave packet, and if ~E and ~B are smooth enough functions

of ~r that they can be treated as being approximately constant over the size of this

wave packet, then the wave packet will follow the usual Lorentz force law of a charged

particle moving through an electric and magnetic field.
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