Physics 5646
Quantum Mechanics B
Problem Set VI
Due: Thursday, Feb 27, 2020

6.1 Useful Hydrogen Atom Expectation Values I
The radial equation for the hydrogen atom is,
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where u(r) = rR(r). Last semester, we solved this equation using the power series method,
and found that normalizable solutions occurred when
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where n = p+ [ + 1 is then the usual n quantum number for hydrogen.

If we imagine adding a perturbation
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to the hydrogen atom, it is easy to see that the radial equation will be modified as follows,
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(a) Show that the radial equation for the perturbed problem (1) can be rewritten,
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where !’ is a function of \.

(b) The power series analysis applied to the perturbed problem will yield the same result
for the quantized energy levels we obtained last semester, but with [ replaced by I’.
The resulting exact energy levels can then be expanded in powers of A\ as follows,
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Here AE! is the first order energy shift due to the perturbation V' = %2 Use that fact,
and the fact that

v
y—1dA

dE
AE' = \—
d

_dE
A=0 dr

)
A=0



To show that the expectation value of 1/7? in a hydrogen-atom energy eigenstate is
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6.2 Useful Hydrogen Atom Expectation Values II

(a) Show that the operator (in position representation using spherical coordinates),
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has the property that
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and, hence, the Hamiltonian for the hydrogen atom can be expressed (again in position

representation),
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Here p, is the operator corresponding to the radial component of the momentum. In
what follows you may use the fact that [p,, L2 = 0 which follows trivially from the

fact that p, acts only on r and L? acts only on 6 and ¢.
(b) Show that for any operator O,
(H,0]) =0,
if the expectation value is taken in a hydrogen-atom energy eigenstate.

(c) Evaluate [H, p,|. Show that when the result is combined with what you proved in Part

(b) you find that,
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Finally, using the result from Problem 6.1, show that

N1
P/ adndl(l+ I+ 1)

2



6.3 Heisenberg equations of motion for a charged particle.
The Hamiltonian for a particle of mass m and charge e moving in the presence of a magnetic

and electric field is

H= 1 (A*— S/T)Q + eo,

where A and ¢ are the vector and scalar potentials corresponding to magnetic and electric

fields B=V x A and E = —ﬁgb. Here we assume A and ¢ do not depend on time.

(a) Show that the Heisenberg equation of motion for 7 is
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Here I = ]3’ — 5/? is the gauge invariant kinematical momentum.

(b) Show that
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where the indices run over z,y, and z in the usual way.

(¢) Show that the Heisenberg equation of motion for IT is
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Hint: You can use the result from Part (b) and the fact that H = Qﬁ—:b + eg.

(d) Combining your result from Parts (a) and (c), show that
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() Argue that if you form a wave packet, and if £ and B are smooth enough functions
of 7 that they can be treated as being approximately constant over the size of this
wave packet, then the wave packet will follow the usual Lorentz force law of a charged

particle moving through an electric and magnetic field.



